Win10系统下安装cudnn6.0+CUDA8.0+anaconda+tensorflow GPU版本

本文详细介绍了在Windows 10系统下,如何通过Anaconda顺利安装CUDA 8.0、cudnn 6.0以及TensorFlow的GPU版本。首先,下载并安装Anaconda 4.2.0,接着安装CUDA的本地版本,然后下载cudnn并将其文件复制到CUDA相应目录,最后通过Anaconda Prompt使用pip安装TensorFlow-GPU。验证安装成功后,可以正常使用TensorFlow的GPU版本进行计算。
摘要由CSDN通过智能技术生成

cudnn6安装包: https://pan.baidu.com/s/1ko5kTFj5hTNrGEBpmqgs-A 密码:jpw5
之前在win10下一直配置不好TensorFlow(GPU)版本,苦苦挣扎几天后无奈转向在ubantu 14.04下安装,安装成功后近日又想在Windows上再试一次,结果很顺利,几个小时便安装好了TensorFlow GPU版本。本文主要写基于anaconda的TensorFlow安装,如有错误请联系作者修改~~~(小白一枚)
环境:win10(64位)
GPU: GTX960
此外还要确保电脑已安装有visual studio2015或2013版本等。

第一步:安装Anaconda
Anaconda里面集成了很多关于python科学计算的第三方库,主要是安装方便,在官网(https://www.continuum.io/downloads)上即可下载。

由于在Windows下TensorFlow目前只支持Python3.5 64-bit版本,为了安装方便,建议安装anaconda4.2.0版本,若为其他版本,需conda创建一个Python3.5的环境。
目前anaconda已更新至4.4.0版本,若需安装anaconda 4.2.0版本,在图示页面点击:Use thesezippedWindows installers,弹出了anaconda的历史版本供下载,选择相应版本即可。

NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks. cuDNN是一个对DNN的GPU加速库。他提供高度可调整的在DNN中的常用的例程实现。 It provides highly tuned implementations of routines arising frequently in DNN applications: 常用语前向后向卷积网络,包括交叉相关。Convolution forward and backward, including cross-correlation 前像后向pooling。Pooling forward and backward 前向后向softmax。Softmax forward and backward 前向后向神经元激活。Neuron activations forward and backward Rectified linear (ReLU) Hyperbolic tangent (TANH) Tensor transformation functions LRN, LCN and batch normalization forward and backward cuDNN’s convolution routines aim for performance competitive with the fastest GEMM (matrix multiply) based implementations of such routines while using significantly less memory. cuDNN突出可定制的数据布局,支持灵活的维数排序,跨步,4D子区域for 4D张量作为输入输出。 cuDNN features customizable data layouts, supporting flexible dimension ordering, striding, and subregions for the 4D tensors used as inputs and outputs to all of its routines. This flexibility allows easy integration into any neural network implementation and avoids the input/output transposition steps sometimes necessary with GEMM-based convolutions. cuDNN offers a context-based API that allows for easy multithreading and (optional) interoperability with CUDA streams. cuDNN提供一种基于上下文的API,允许简单的多线程和CDUA流的互用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值