时间序列数据之二阶指数平滑法以及python代码实现

本文介绍了二阶指数平滑的概念,相较于一次指数平滑,它能更好地处理直线型数据。文章展示了平滑系数alpha的计算公式,并给出了平滑前后数据的对比。虽然代码未能直接展示,但提供了作者的GitHub链接以供查看。
摘要由CSDN通过智能技术生成
相关概念可参考前一篇博客
二阶指数平滑

二次指数平滑一般也应用于直线型,但是效果会比一次指数平滑好很多,也就相当于加强版的一次指数平滑。
给定平滑系数alpha,那么二次指数平滑的计算公式为:
在这里插入图片描述
预测未来t期的值X{t+T}的计算公式为:
在这里插入图片描述
其中:
在这里插入图片描述
在这里插入图片描述

平滑之前的数据如下图所示:
在这里插入图片描述
二阶指数平滑之后的效果如下图所示:
在这里插入图片描述

代码不知道为什么上传不了 ,如果想看代码 可以去我的github:

https://github.com/jiangzhongkai


三阶指数平滑在下篇博文中介绍

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值