discrete wavelet transform (DWT):离散小波变换

本文介绍了如何使用Python进行离散小波变换(DWT),提供了3D和2D数据的切片操作代码示例,用于执行DWT并组合结果。这些代码片段展示了如何拆分和重组信号的不同频率成分,包括低频(LL,HL,LH)和高频(HH)部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

discrete wavelet transform (DWT):离散小波变换

切片操作可视化图

在这里插入图片描述

切片操作代码实现

def dwt_init3d(x):

    x01 = x[:, :, :, 0::2, :] / 2
    x02 = x[:, :, :, 1::2, :] / 2
    x1 = x01[:, :, :, :, 0::2]
    x2 = x02[:, :, :, :, 0::2]
    x3 = x01[:, :, :, :, 1::2]
    x4 = x02[:, :, :, :, 1::2]
    x_LL = x1 + x2 + x3 + x4
    x_HL = -x1 - x2 + x3 + x4
    x_LH = -x1 + x2 - x3 + x4
    x_HH = x1 - x2 - x3 + x4

    return torch.cat((x_LL, x_HL, x_LH, x_HH), 1)
def dwt_init(x):

    x01 = x[:, :, 0::2, :] / 2
    x02 = x[:, :, 1::2, :] / 2
    x1 = x01[:, :, :, 0::2]
    x2 = x02[:, :, :, 0::2]
    x3 = x01[:, :, :, 1::2]
    x4 = x02[:, :, :, 1::2]
    x_LL = x1 + x2 + x3 + x4
    x_HL = -x1 - x2 + x3 + x4
    x_LH = -x1 + x2 - x3 + x4
    x_HH = x1 - x2 - x3 + x4

    return torch.cat((x_LL, x_HL, x_LH, x_HH), 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值