5-二叉树

è¿éåå¾çæè¿°

目录

树的表示

接口

父节点表示法

孩子节点表示法

父节点 + 孩子节点

长子  + 兄弟

二叉树

二叉树实现

BinNode模板类

BinNode接口实现

BinTree模板类

高度更新

节点插入

子树接入

子树删除

子树分离

先序遍历

迭代1:思路

迭代1:实现

迭代1:分析

迭代2:思路

迭代2:实现

迭代2:实例

中序遍历

观察

思路

实现

实例

直接后继 

后序遍历

难点

迭代:思路

迭代:实现

层次遍历

实现

应用:表达式树

重构

编码树

Huffman树


树是否是线性结构

树,其中的元素之间并不存在天然的直接后继或直接前驱 关系。不过,正如我们马上就要看到的,只要附加某种约束(比如遍历),也可以在树中的元素 之间确定某种线性次序,因此树属于半线性结构(semi-linear structure)。 

有根树

从图论得角度来看,树等价于连通无环图。因此与一般得图相同。树也由一组顶点以及联接与其间得若干条边组成,在计算机科学中,往往还会在此基础上,再指定某一特定顶点,并称之为根。再指定根节点之后,我们也称为根树,此时,从程序实现得角度,我们也更多地将顶点称作节点。

深度和层次

由树的连通性,每一节点与根之间都有一条路径相联;而根据树的五环性,由根通往每个节点的路径必然唯一。

高度

树T中所有节点深度的最大值称作该树的高度(height),记作height(T)。

树的表示

接口

父节点表示法

 时间方面,仅需常数时间,即可确定任一节点的父节点;但反过来,孩子节点的查找却不得不花费0(n)时间访遍所有节点。

孩子节点表示法

如此,对于拥有r个孩子的节点,可在0(r + 1)时间内列举出其所有的孩子。

父节点 + 孩子节点

以上父节点表示法和孩子节点表示法各有所长,各有所短,为综合二者的优势,消除缺点

尽管如此可以高效地兼顾对父节点和孩子的定位,但在节点插入与删除操作频繁的场合。为动态地维护和更新增树地拓扑结构。不得不反复地遍历和调整一些节点所对应地孩子序列。 

长子  + 兄弟

有序多叉树中任一非叶节点都有唯一的“长子”,而且从该“长子”出发,可按照预先约定或指定的次序遍历所有孩子节点,

现在,若将这两个指针分别与二叉树节点的左右孩子指针对应起来,则可进一步地将原有多叉树转换成如图(c)所示的常规二叉树。 

二叉树

二叉树中每个节点的度数均不超过2(如图b),A 节点地度为1,B节点的度为2。

因此在二叉树中,同一父节点的孩子都可以左右相互区分——此时,亦称作有序二叉树

不含一度节点地二叉树称作真二叉树

二叉树实现

BinNode模板类

#define BinNodePosi(T) BinNode<T>* //节点位置
#define stature(p) ((p) ? (p)->height : -1) //节点高度(与“空树高度为-1”的约定相统一)
typedef enum { RB_RED, RB_BLACK} RBColor; //节点颜色

template <typename T> struct BinNode { //二叉树节点模板类
// 成员(为简化描述起见统一开放,读者可根据需要进一步封装)
   T data; //数值
   BinNodePosi(T) parent; BinNodePosi(T) lc; BinNodePosi(T) rc; //父节点及左、右孩子
   int height; //高度(通用)
   int npl; //Null Path Length(左式堆,也可直接用height代替)
   RBColor color; //颜色(红黑树)
// 构造函数
   BinNode() :
      parent ( NULL ), lc ( NULL ), rc ( NULL ), height ( 0 ), npl ( 1 ), color ( RB_RED ) { }
   BinNode ( T e, BinNodePosi(T) p = NULL, BinNodePosi(T) lc = NULL, BinNodePosi(T) rc = NULL,
             int h = 0, int l = 1, RBColor c = RB_RED ) :
      data ( e ), parent ( p ), lc ( lc ), rc ( rc ), height ( h ), npl ( l ), color ( c ) { }
// 操作接口
   int size(); //统计当前节点后代总数,亦即以其为根的子树的规模
   BinNodePosi(T) insertAsLC ( T const& ); //作为当前节点的左孩子插入新节点
   BinNodePosi(T) insertAsRC ( T const& ); //作为当前节点的右孩子插入新节点
   BinNodePosi(T) succ(); //取当前节点的直接后继
   template <typename VST> void travLevel ( VST& ); //子树层次遍历
   template <typename VST> void travPre ( VST& ); //子树先序遍历
   template <typename VST> void travIn ( VST& ); //子树中序遍历
   template <typename VST> void travPost ( VST& ); //子树后序遍历
// 比较器、判等器(各列其一,其余自行补充)
   bool operator< ( BinNode const& bn ) { return data < bn.data; } //小于
   bool operator== ( BinNode const& bn ) { return data == bn.data; } //等于
   /*DSA*/
   /*DSA*/BinNodePosi(T) zig(); //顺时针旋转
   /*DSA*/BinNodePosi(T) zag(); //逆时针旋转
};

BinNode接口实现


template <typename T> BinNodePosi(T) BinNode<T>::insertAsLC ( T const& e )
{ return lc = new BinNode ( e, this ); } //将e作为当前节点的左孩子插入二叉树

template <typename T> BinNodePosi(T) BinNode<T>::insertAsRC ( T const& e )
{ return rc = new BinNode ( e, this ); } //将e作为当前节点的右孩子插入二叉树

template <typename T> int BinNode<T>::size() { //统计当前节点后代总数,即以其为根的子树规模
   int s = 1; //计入本身
   if ( lc ) s += lc->size(); //递归计入左子树规模
   if ( rc ) s += rc->size(); //递归计入右子树规模
   return s;
}

BinTree模板类

template <typename T> class BinTree { //二叉树模板类
protected:
   int _size; BinNodePosi(T) _root; //规模、根节点
   virtual int updateHeight ( BinNodePosi(T) x ); //更新节点x的高度
   void updateHeightAbove ( BinNodePosi(T) x ); //更新节点x及其祖先的高度
public:
   BinTree() : _size ( 0 ), _root ( NULL ) { } //构造函数
   ~BinTree() { if ( 0 < _size ) remove ( _root ); } //析构函数
   int size() const { return _size; } //规模
   bool empty() const { return !_root; } //判空
   BinNodePosi(T) root() const { return _root; } //树根
   BinNodePosi(T) insertAsRoot ( T const& e ); //插入根节点
   BinNodePosi(T) insertAsLC ( BinNodePosi(T) x, T const& e ); //e作为x的左孩子(原无)插入
   BinNodePosi(T) insertAsRC ( BinNodePosi(T) x, T const& e ); //e作为x的右孩子(原无)插入
   BinNodePosi(T) attachAsLC ( BinNodePosi(T) x, BinTree<T>* &T ); //T作为x左子树接入
   BinNodePosi(T) attachAsRC ( BinNodePosi(T) x, BinTree<T>* &T ); //T作为x右子树接入
   int remove ( BinNodePosi(T) x ); //删除以位置x处节点为根的子树,返回该子树原先的规模
   BinTree<T>* secede ( BinNodePosi(T) x ); //将子树x从当前树中摘除,并将其转换为一棵独立子树
   template <typename VST> //操作器
   void travLevel ( VST& visit ) { if ( _root ) _root->travLevel ( visit ); } //层次遍历
   template <typename VST> //操作器
   void travPre ( VST& visit ) { if ( _root ) _root->travPre ( visit ); } //先序遍历
   template <typename VST> //操作器
   void travIn ( VST& visit ) { if ( _root ) _root->travIn ( visit ); } //中序遍历
   template <typename VST> //操作器
   void travPost ( VST& visit ) { if ( _root ) _root->travPost ( visit ); } //后序遍历
   bool operator< ( BinTree<T> const& t ) //比较器(其余自行补充)
   { return _root && t._root && lt ( _root, t._root ); }
   bool operator== ( BinTree<T> const& t ) //判等器
   { return _root && t._root && ( _root == t._root ); }
   /*DSA*/
   /*DSA*/void stretchToLPath() { stretchByZag ( _root ); } //借助zag旋转,转化为左向单链
   /*DSA*/void stretchToRPath() { stretchByZig ( _root, _size ); } //借助zig旋转,转化为右向单链
}; //BinTree

高度更新

#define stature(p) ((p) ? (p)->height : -1) //节点高度(与“空树高度为-1”的约定相统一)

template <typename T> int BinTree<T>::updateHeight ( BinNodePosi(T) x ) //更新节点x高度
{ return x->height = 1 + max ( stature ( x->lc ), stature ( x->rc ) ); } //具体规则,因树而异

template <typename T> void BinTree<T>::updateHeightAbove ( BinNodePosi(T) x ) //更新高度
{ while ( x ) { updateHeight ( x ); x = x->parent; } } //从x出发,覆盖历代祖先。可优化

节点插入

template <typename T> BinNodePosi(T) BinTree<T>::insertAsRoot ( T const& e )
{ _size = 1; return _root = new BinNode<T> ( e ); } //将e当作根节点插入空的二叉树

template <typename T> BinNodePosi(T) BinTree<T>::insertAsLC ( BinNodePosi(T) x, T const& e )
{ _size++; x->insertAsLC ( e ); updateHeightAbove ( x ); return x->lc; } //e插入为x的左孩子

template <typename T> BinNodePosi(T) BinTree<T>::insertAsRC ( BinNodePosi(T) x, T const& e )
{ _size++; x->insertAsRC ( e ); updateHeightAbove ( x ); return x->rc; } //e插入为x的右孩子

子树接入

template <typename T> //二叉树子树接入算法:将S当作节点x的左子树接入,S本身置空
BinNodePosi(T) BinTree<T>::attachAsLC ( BinNodePosi(T) x, BinTree<T>* &S ) { //x->lc == NULL
   if ( x->lc = S->_root ) x->lc->parent = x; //接入
   _size += S->_size; updateHeightAbove ( x ); //更新全树规模与x所有祖先的高度
   S->_root = NULL; S->_size = 0; release ( S ); S = NULL; return x; //释放原树,返回接入位置
}

template <typename T> //二叉树子树接入算法:将S当作节点x的右子树接入,S本身置空
BinNodePosi(T) BinTree<T>::attachAsRC ( BinNodePosi(T) x, BinTree<T>* &S ) { //x->rc == NULL
   if ( x->rc = S->_root ) x->rc->parent = x; //接入
   _size += S->_size; updateHeightAbove ( x ); //更新全树规模与x所有祖先的高度
   S->_root = NULL; S->_size = 0; release ( S ); S = NULL; return x; //释放原树,返回接入位置
}

子树删除

template <typename T> //删除二叉树中位置x处的节点及其后代,返回被删除节点的数值
int BinTree<T>::remove ( BinNodePosi(T) x ) { //assert: x为二叉树中的合法位置
   FromParentTo ( *x ) = NULL; //切断来自父节点的指针
   updateHeightAbove ( x->parent ); //更新祖先高度
   int n = removeAt ( x ); _size -= n; return n; //删除子树x,更新规模,返回删除节点总数
}
template <typename T> //删除二叉树中位置x处的节点及其后代,返回被删除节点的数值
static int removeAt ( BinNodePosi(T) x ) { //assert: x为二叉树中的合法位置
   if ( !x ) return 0; //递归基:空树
   int n = 1 + removeAt ( x->lc ) + removeAt ( x->rc ); //递归释放左、右子树
   release ( x->data ); release ( x ); return n; //释放被摘除节点,并返回删除节点总数
}

子树分离

template <typename T> //二叉树子树分离算法:将子树x从当前树中摘除,将其封装为一棵独立子树返回
BinTree<T>* BinTree<T>::secede ( BinNodePosi(T) x ) { //assert: x为二叉树中的合法位置
   FromParentTo ( *x ) = NULL; //切断来自父节点的指针
   updateHeightAbove ( x->parent ); //更新原树中所有祖先的高度
   BinTree<T>* S = new BinTree<T>; S->_root = x; x->parent = NULL; //新树以x为根
   S->_size = x->size(); _size -= S->_size; return S; //更新规模,返回分离出来的子树
}

 

先序遍历

迭代1:思路

迭代1:实现

template <typename T, typename VST> //元素类型、操作器
void travPre_I1 ( BinNodePosi(T) x, VST& visit ) { //二叉树先序遍历算法(迭代版#1)
   Stack<BinNodePosi(T)> S; //辅助栈
   if ( x ) S.push ( x ); //根节点入栈
   while ( !S.empty() ) { //在栈变空之前反复循环
      x = S.pop(); visit ( x->data ); //弹出并访问当前节点,其非空孩子的入栈次序为先右后左
      if ( HasRChild ( *x ) ) S.push ( x->rc ); if ( HasLChild ( *x ) ) S.push ( x->lc );
   }
}

迭代1:分析

迭代2:思路

 迭代2:实现

//从当前节点出发,沿左分支不断深入,直至没有左分支的节点;沿途节点遇到后立即访问
template <typename T, typename VST> //元素类型、操作器
static void visitAlongLeftBranch ( BinNodePosi(T) x, VST& visit, Stack<BinNodePosi(T)>& S ) {
   while ( x ) {
      visit ( x->data ); //访问当前节点
      S.push ( x->rc ); //右孩子入栈暂存(可优化:通过判断,避免空的右孩子入栈)
      x = x->lc;  //沿左分支深入一层
   }
}

template <typename T, typename VST> //元素类型、操作器
void travPre_I2 ( BinNodePosi(T) x, VST& visit ) { //二叉树先序遍历算法(迭代版#2)
   Stack<BinNodePosi(T)> S; //辅助栈
   while ( true ) {
      visitAlongLeftBranch ( x, visit, S ); //从当前节点出发,逐批访问
      if ( S.empty() ) break; //直到栈空
      x = S.pop(); //弹出下一批的起点
   }
}

 迭代2:实例

中序遍历

观察

 思路

 实现

template <typename T> //从当前节点出发,沿左分支不断深入,直至没有左分支的节点
static void goAlongLeftBranch ( BinNodePosi(T) x, Stack<BinNodePosi(T)>& S ) {
   while ( x ) { S.push ( x ); x = x->lc; } //当前节点入栈后随即向左侧分支深入,迭代直到无左孩子
}

template <typename T, typename VST> //元素类型、操作器
void travIn_I1 ( BinNodePosi(T) x, VST& visit ) { //二叉树中序遍历算法(迭代版#1)
   Stack<BinNodePosi(T)> S; //辅助栈
   while ( true ) {
      goAlongLeftBranch ( x, S ); //从当前节点出发,逐批入栈
      if ( S.empty() ) break; //直至所有节点处理完毕
      x = S.pop(); visit ( x->data ); //弹出栈顶节点并访问之
      x = x->rc; //转向右子树
   }
}

实例

直接后继 

template <typename T> BinNodePosi(T) BinNode<T>::succ() { //定位节点v的直接后继
   BinNodePosi(T) s = this; //记录后继的临时变量
   if ( rc ) { //若有右孩子,则直接后继必在右子树中,具体地就是
      s = rc; //右子树中
      while ( HasLChild ( *s ) ) s = s->lc; //最靠左(最小)的节点
   } else { //否则,直接后继应是“将当前节点包含于其左子树中的最低祖先”,具体地就是
      while ( IsRChild ( *s ) ) s = s->parent; //逆向地沿右向分支,不断朝左上方移动
      s = s->parent; //最后再朝右上方移动一步,即抵达直接后继(如果存在)
   }
   return s;
}

 

后序遍历

难点

 迭代:思路

 迭代:实现

template <typename T> //在以S栈顶节点为根的子树中,找到最高左侧可见叶节点
static void gotoHLVFL ( Stack<BinNodePosi(T)>& S ) { //沿途所遇节点依次入栈
   while ( BinNodePosi(T) x = S.top() ) //自顶而下,反复检查当前节点(即栈顶)
      if ( HasLChild ( *x ) ) { //尽可能向左
         if ( HasRChild ( *x ) ) S.push ( x->rc ); //若有右孩子,优先入栈
         S.push ( x->lc ); //然后才转至左孩子
      } else //实不得已
         S.push ( x->rc ); //才向右
   S.pop(); //返回之前,弹出栈顶的空节点
}

template <typename T, typename VST>
void travPost_I ( BinNodePosi(T) x, VST& visit ) { //二叉树的后序遍历(迭代版)
   Stack<BinNodePosi(T)> S; //辅助栈
   if ( x ) S.push ( x ); //根节点入栈
   while ( !S.empty() ) {
      if ( S.top() != x->parent ) //若栈顶非当前节点之父(则必为其右兄),此时需
         gotoHLVFL ( S ); //在以其右兄为根之子树中,找到HLVFL(相当于递归深入其中)
      x = S.pop(); visit ( x->data ); //弹出栈顶(即前一节点之后继),并访问之
   }
}

 

层次遍历

实现

template <typename T> template <typename VST> //元素类型、操作器
void BinNode<T>::travLevel ( VST& visit ) { //二叉树层次遍历算法
   Queue<BinNodePosi(T)> Q; //辅助队列
   Q.enqueue ( this ); //根节点入队
   while ( !Q.empty() ) { //在队列再次变空之前,反复迭代
      BinNodePosi(T) x = Q.dequeue(); visit ( x->data ); //取出队首节点并访问之
      if ( HasLChild ( *x ) ) Q.enqueue ( x->lc ); //左孩子入队
      if ( HasRChild ( *x ) ) Q.enqueue ( x->rc ); //右孩子入队
   }
}

应用:表达式树

重构

编码树

Huffman树

 

 

 

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值