L1和L2正则化直观理解

正则化用于防止过拟合,L1和L2正则化是常见方法。L1正则化产生稀疏解,利于特征选择;L2正则化使参数更小,避免过拟合。L1正则化的几何解释是一个正方形,而L2是一个圆形。正则化参数λ决定了模型复杂度和泛化能力的平衡。
摘要由CSDN通过智能技术生成

正则化是用于解决模型过拟合的问题。它可以看做是损失函数的惩罚项,即是对模型的参数进行一定的限制。

应用背景:
当模型过于复杂,样本数不够多时,模型会对训练集造成过拟合,模型的泛化能力很差,在测试集上的精度远低于训练集。
这时常用正则化来解决过拟合的问题,常用的正则化有L1正则化和L2正则化。

最小平分损失函数的L1正则化:
在这里插入图片描述
最小平方损失函数的L2正则化:
在这里插入图片描述

L1正则化与L2正则化的区别:
在这里插入图片描述
解的唯一性是一个更简单的性质,但需要一点想象。首先,看下图:
在这里插入图片描述
绿色的线(L2范数)是唯一的最短的路径,而红色、蓝色、黄色线条(L1范数)都是同一路径,长度一样(12)。可以将其扩展至n-维的情形。这就是为什么L2范数有唯一解而L1并不是。

内置特征选择是L1范数被经常提及的有用的性质,而L2范数并不具备。这是L1范数的自然结果,它趋向于产生稀疏的系数(在后面会解释)。假设模型有100个系数,但是仅仅只有其中的10个是非零的,这实际上是说“其余的90个系数在预测目标值时都是无用的”。L2范数产生非稀疏的系数,因此它不具备这个性质。

计算效率。L1范数没有一个解析解,但是L2范数有。这就允许L2范数在计算上能高效地计算。然而,L1范数的解具备稀疏性,这就允许它可以使用稀疏算法,以使得计算更加高效
注:解析解是指通过严格的公式所求得的解,
例如:方程2y=x
解:
y=0.5x 这是解析解
x=1时,y=0.5 数值解

L1正则化的直观理解
L1正则化(数学符号表示为 ∣ ∣ w ∣ ∣ 1 ||w||_1 w1)的公式:在原有的损失函数基础上加上权重参数的绝对值。 L = L l o s s + λ ∑ j ∣ w j ∣ L=L_{loss}+\lambda \sum_{j}|w_j| L=Lloss+λj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值