正则化是用于解决模型过拟合的问题。它可以看做是损失函数的惩罚项,即是对模型的参数进行一定的限制。
应用背景:
当模型过于复杂,样本数不够多时,模型会对训练集造成过拟合,模型的泛化能力很差,在测试集上的精度远低于训练集。
这时常用正则化来解决过拟合的问题,常用的正则化有L1正则化和L2正则化。
最小平分损失函数的L1正则化:
最小平方损失函数的L2正则化:
L1正则化与L2正则化的区别:
解的唯一性是一个更简单的性质,但需要一点想象。首先,看下图:
绿色的线(L2范数)是唯一的最短的路径,而红色、蓝色、黄色线条(L1范数)都是同一路径,长度一样(12)。可以将其扩展至n-维的情形。这就是为什么L2范数有唯一解而L1并不是。
内置特征选择是L1范数被经常提及的有用的性质,而L2范数并不具备。这是L1范数的自然结果,它趋向于产生稀疏的系数(在后面会解释)。假设模型有100个系数,但是仅仅只有其中的10个是非零的,这实际上是说“其余的90个系数在预测目标值时都是无用的”。L2范数产生非稀疏的系数,因此它不具备这个性质。
计算效率。L1范数没有一个解析解,但是L2范数有。这就允许L2范数在计算上能高效地计算。然而,L1范数的解具备稀疏性,这就允许它可以使用稀疏算法,以使得计算更加高效
注:解析解是指通过严格的公式所求得的解,
例如:方程2y=x
解:
y=0.5x 这是解析解
x=1时,y=0.5 数值解
L1正则化的直观理解
L1正则化(数学符号表示为 ∣ ∣ w ∣ ∣ 1 ||w||_1 ∣∣w∣∣1)的公式:在原有的损失函数基础上加上权重参数的绝对值。 L = L l o s s + λ ∑ j ∣ w j ∣ L=L_{loss}+\lambda \sum_{j}|w_j| L=Lloss+λj∑