[机器学习]Neyman-Pearson基本引理的证明以及使用

本文介绍了Neyman-Pearson基本引理,探讨了假设检验中的两类错误、功效函数和最优检验。内容包括假设检验的基本概念,如零假设、备择假设和拒绝域,以及如何通过控制第一类错误的概率来寻找最优检验。重点讨论了最优势检验的定义,并给出Neyman-Pearson基本引理的证明和应用。
摘要由CSDN通过智能技术生成

Neyman-Pearson基本引理的证明以及使用

关于假设检验的背景

1、基本概念

关于一个分布p的零假设和备择假设记为 H 0 : p ∈ P 0    , H 1 : p ∈ P 1 H_{0}:p \in P_{0}\;,\quad H_{1}:p\in P_{1} H0:pP0,H1:pP1
P 0 与 P 1 P_{0}与P_{1} P0P1是分布族P的互不相交的非空子集
关于参数 θ \theta θ的零假设与备择假设记为 H 0 : θ ∈ Θ 0    , H 1 : θ ∈ Θ 1 H_{0}:\theta\in\Theta_{0}\;,\quad H_{1}:\theta\in\Theta_{1} H0:θΘ0,H1:θΘ1
Θ 0 \Theta_{0} Θ0 Θ 1 \Theta_{1} Θ1 Θ \Theta Θ的互不相交的非空子集.
给定 H 0 H_{0} H0 H 1 H_{1} H1就等于给定检验问题,记为检验问题 ( H 0 , H 1 ) (H_{0},H_{1}) (H0,H1).

2、定义

在检验问题 ( H 0 , H 1 ) (H_{0},H_{1}) (H0,H1)中,检验法则就是设法把样本空间X划分为互不相交的两个可测集: X = W + W ‾ X=W+\overline{W} X=W+W
同时规定:
当观测值 x ∈ W x\in W xW时,就拒绝原假设 H 0 H_{0} H0,认为备择假设 H 1 H_{1} H1成立.
当观测值 x ∉ W x\notin W x/W时,就不拒绝原假设 H 0 H_{0} H0,认为原假设 H 0 H_{0} H0成立.
W W W为检验的拒绝域.
所以假设检验的核心就是寻找一个合适的拒绝域,那什么是合适,或者说我们凭什么可以通过样本落在拒绝域中时就可以选择相信拒绝零假设。为此我们引入两类错误和功效函数的概念。

3、两类错误

在假设检验中,若 H 0 : θ ∈ Θ 0    , H 1 : θ ∈ Θ 1    , X = W + W ‾ H_{0}:\theta\in\Theta_{0}\;,\quad H_{1}:\theta\in\Theta_{1}\;,\quad X=W+\overline{W} H0:θΘ0,H1:θΘ1,X=W+W
当原假设 H 0 H_{0} H0为真的时候,样本观测值却落在拒绝域 W W W中,从而使得我们错误的选择拒绝零假设,这种错误称为第一类错误,所以犯第一类错误的概率为: P θ ( x ∈ W )    , θ ∈ Θ 0 P_{\theta}(x\in W)\;,\quad \theta\in\Theta_{0} Pθ(x

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值