二分法讲解

文章详细介绍了二分法在处理边界问题时的注意事项,包括整数二分法的单调性和寻找边界点的模板,以及浮点数二分法的模板,并提供了相关练习和示例代码。强调了在处理二分法时寻找满足条件的边界点的重要性,以及在浮点数二分中如何设置精度避免死循环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二分法比较蛋疼的是由很多边界问题要考虑。
一、整数二分
单调性与二分的关系:有单调性一定可以二分,用二分不一定是单调性。二分的本质不是单调性而是边界点(找符合条件的最小的数或者最大的数)整数二分是求红色范围的右端点 或者 绿色范围的左端点。
在这里插入图片描述
【模板1】

1、求红色边界点
在这里插入图片描述
注: + 1原因:
/ 是向下取整,当l与r只相差1的时候,即 l = r - 1,最终的结果mid = l(即结果不变还是l),补上1之后 mid = r,再次循环之后l = r 即[r , r],最终结束循环。如果不补1将会出现死循环。

【模板2】
求绿色边界点
在这里插入图片描述
2.求解二分问题的思路
每次先划分区间,写一个mid,后面再考虑是否补上加1操作然后想一个check()函数,康康是否满足性质,根据check()函数的值取判断怎么划分(mid在哪一边),到底是是l = mid,还是r = mid,第一种补上1即可。(关键是找性质,判断是否满足性质然后判断mid在左边还是右边)。

3.练习
(1).数的范围

给定一个按照升序排列的长度为 nn 的整数数组,以及 qq 个查询。

对于每个查询,返回一个元素 kk 的起始位置和终止位置(位置从 00 开始计数)。

如果数组中不存在该元素,则返回 -1 -1。

输入格式

第一行包含整数 n 和 q,表示数组长度和询问个数。

第二行包含 nn 个整数(均在 110000 范围内),表示完整数组。

接下来 q行,每行包含一个整数 k,表示一个询问元素。

输出格式

共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1。

数据范围

1≤n≤100000
1≤q≤10000
1≤k≤10000

输入:
6 3
1 2 2 3 3 4
3
4
5

输出:
3 4
5 5
-1 -1

思路:
在这里插入图片描述

#include<iostream>

using namespace std;
const int N = 100000+10;
int q[N];

int main()
{
    int n, m;
    cin>> n >> m;
    for(int i = 0; i < n; i++) cin>>q[i];
    while(m--)
    {
      int x;
      cin>> x;
      // 寻找起始位置
      int l = 0, r = n - 1;
      while(l < r)
      {
          int mid =(l + r) >> 1;
          if(q[mid] >= x) r = mid;
          else l = mid + 1;
      }
      if(q[l] != x) cout<<"-1 -1"<<endl;//这个时候表示不存在我们找的点了,因为q[l]是满足>=x的
      else{
          cout<<l<<" ";
          // 寻找终点位置
          int l = 0, r = n - 1;
          while(l<r)
          {
              int mid = (l + r + 1) >> 1;
              if(q[mid] <= x) l = mid;
              else r = mid - 1;
          }
          cout<< l << endl;
      }
    }
    return 0;
}

模板总结如下:

//查找左边界 SearchLeft 简写SL
int SL(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid; 
        else l = mid + 1; 
    }   
    return l;
}
//查找右边界 SearchRight 简写SR 
int SR(int l, int r) 
{
    while (l < r)
    {                   
        int mid = l + r + 1 >> 1; //需要+1 防止死循环
        if (check(mid)) l = mid;
        else r = mid - 1; 
    }
    return r; 
}

最后return 的时候 l和r都是可以 因为最后一定r==l

二、浮点数二分
1.浮点数二分模板

浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根
bool check(double x) {/* ... */} // 检查x是否满足某种性质(包含了计算和条件)

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求(一般比题目要求的大2)
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

练习:

给定一个浮点数 n
,求它的三次方根。

输入格式
共一行,包含一个浮点数 n
。

输出格式
共一行,包含一个浮点数,表示问题的解。

注意,结果保留 6
 位小数。

数据范围
−10000≤n≤10000
 
输入样例:
1000.00
输出样例:
10.000000
#include<iostream>
 
using namespace std;
 
int main()
{   
    double n;
    cin>>n;
     
    double l = -10000, r = 10000;
     // eps 表示精度,取决于题目对精度的要求(保险1e-8)
    const double eps = 1e-8;  
    while(r - l > eps)
    {
        double mid = (l + r) / 2;
        if(mid * mid * mid >= n) r = mid;
        else l = mid;
    }
     
     printf("%.6lf\n", l);
    return 0;
     
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值