二分法比较蛋疼的是由很多边界问题要考虑。
一、整数二分
单调性与二分的关系:有单调性一定可以二分,用二分不一定是单调性。二分的本质不是单调性而是边界点(找符合条件的最小的数或者最大的数)整数二分是求红色范围的右端点 或者 绿色范围的左端点。
【模板1】
1、求红色边界点
注: + 1原因:
/ 是向下取整,当l与r只相差1的时候,即 l = r - 1,最终的结果mid = l(即结果不变还是l),补上1之后 mid = r,再次循环之后l = r 即[r , r],最终结束循环。如果不补1将会出现死循环。
【模板2】
求绿色边界点
2.求解二分问题的思路
每次先划分区间,写一个mid,后面再考虑是否补上加1操作然后想一个check()函数,康康是否满足性质,根据check()函数的值取判断怎么划分(mid在哪一边),到底是是l = mid,还是r = mid,第一种补上1即可。(关键是找性质,判断是否满足性质然后判断mid在左边还是右边)。
3.练习
(1).数的范围
给定一个按照升序排列的长度为 nn 的整数数组,以及 qq 个查询。
对于每个查询,返回一个元素 kk 的起始位置和终止位置(位置从 00 开始计数)。
如果数组中不存在该元素,则返回 -1 -1。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 nn 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入:
6 3
1 2 2 3 3 4
3
4
5
输出:
3 4
5 5
-1 -1
思路:
#include<iostream>
using namespace std;
const int N = 100000+10;
int q[N];
int main()
{
int n, m;
cin>> n >> m;
for(int i = 0; i < n; i++) cin>>q[i];
while(m--)
{
int x;
cin>> x;
// 寻找起始位置
int l = 0, r = n - 1;
while(l < r)
{
int mid =(l + r) >> 1;
if(q[mid] >= x) r = mid;
else l = mid + 1;
}
if(q[l] != x) cout<<"-1 -1"<<endl;//这个时候表示不存在我们找的点了,因为q[l]是满足>=x的
else{
cout<<l<<" ";
// 寻找终点位置
int l = 0, r = n - 1;
while(l<r)
{
int mid = (l + r + 1) >> 1;
if(q[mid] <= x) l = mid;
else r = mid - 1;
}
cout<< l << endl;
}
}
return 0;
}
模板总结如下:
//查找左边界 SearchLeft 简写SL
int SL(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
//查找右边界 SearchRight 简写SR
int SR(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1; //需要+1 防止死循环
if (check(mid)) l = mid;
else r = mid - 1;
}
return r;
}
最后return 的时候 l和r都是可以 因为最后一定r==l
二、浮点数二分
1.浮点数二分模板
浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根
bool check(double x) {/* ... */} // 检查x是否满足某种性质(包含了计算和条件)
double bsearch_3(double l, double r)
{
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求(一般比题目要求的大2)
while (r - l > eps)
{
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
return l;
}
练习:
给定一个浮点数 n
,求它的三次方根。
输入格式
共一行,包含一个浮点数 n
。
输出格式
共一行,包含一个浮点数,表示问题的解。
注意,结果保留 6
位小数。
数据范围
−10000≤n≤10000
输入样例:
1000.00
输出样例:
10.000000
#include<iostream>
using namespace std;
int main()
{
double n;
cin>>n;
double l = -10000, r = 10000;
// eps 表示精度,取决于题目对精度的要求(保险1e-8)
const double eps = 1e-8;
while(r - l > eps)
{
double mid = (l + r) / 2;
if(mid * mid * mid >= n) r = mid;
else l = mid;
}
printf("%.6lf\n", l);
return 0;
}