自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

夏栀的博客

个人网站已上线,欢迎访问关注:http://www.wjn1996.cn

  • 博客(129)
  • 资源 (12)
  • 问答 (1)
  • 收藏
  • 关注

原创 AAAI2020知识图谱论文集

全部列表:https://aaai.org/Conferences/AAAI-20/wp-content/uploads/2020/01/AAAI-20-Technical-Program-Schedule.pdf本文精选了知识图谱有关论文集:知识图谱补全(Graph Completion)1322: Improving Entity Linking by Modeling Latent Entity Type InformationShuang Chen; Jinpeng Wang; Feng .

2020-06-29 16:05:29 858

原创 基于深度学习的命名实体识别与关系抽取

基于深度学习的命名实体识别与关系抽取摘要:构建知识图谱包含四个主要的步骤:数据获取、知识抽取、知识融合和知识加工。其中最主要的步骤是知识抽取。知识抽取包括三个要素:命名实体识别(NER)、实体关系抽取(RE)和属性抽取。其中命名实体识别(NER)和实体关系抽取(RE)是自然语言处理(NLP)任务中非常重要的部分。  本文将以深度学习的角度,对命名实体识别和关系抽取进行分析,在阅读本文之前,读者...

2020-03-10 09:53:45 41428 42

原创 我的保研经历(2018年9月)

我的保研经历—双非二本保研华东师范大学数据科学与工程学院  本人的本科专业是软件工程,是关于计算机专业的学生。本科为二本双非院校保研至上海985双一流院校华东师范大学数据院。虽然2019研究生推免的工作已经过去半年了,但是那一段经历仍然记忆犹新。在这半年里有很多学弟学妹询问我保研的经历以及保研的条件,在我自己的学校里也给16、17和18级同学做过经验交流,这两天没事打算以博客形式讲述本科三年的学...

2019-02-20 22:53:50 5478 22

原创 基于深度学习的知识图谱综述

随着现如今计算机设备的更新,计算能力的不断提高促使深度学习再一度推上热门技术,深度学习已经广泛应用于图像处理、文本挖掘、自然语言处理等方面,在医学、交通、教育、旅游等行业发挥极大地作用。知识图谱也在深度学习的技术下得到了很大的发展。

2018-11-22 18:42:54 8294 5

原创 从文本中自动抽取结构化三元组

从文本中自动抽取结构化三元组参考文献【1】:ICDM2019 Knowledge Graph Contest: Team UWA参考文献【2】:Seq2KG: An End-to-End Neural Model for Domain Agnostic Knowledge Graph (not Text Graph) Construction from TextGitHub:https://github.com/Michael-Stewart-Webdev/Seq2KG现有工作缺点:  Open

2020-11-30 16:24:23 47

原创 机器阅读理解算法集锦

机器阅读理解算法集锦  机器阅读理解(Machine Reading Comprehension, MRC) 是一项基于文本的问答任务(Text-QA),也是非常重要和经典的自然语言处理任务之一。机器阅读理解旨在对自然语言文本进行语义理解和推理,并以此完成一些下游的任务。具体地讲,机器阅读理解的任务定义是:给定一个问句(question) qqq,以及对应的一个或多个文本段落(passage) ppp,通过学习一个模型 fθf_\thetafθ​ ,使得其可以返回一个具体的答案,记做 a=fθ(q,p

2020-11-29 14:14:49 33

原创 中文维基百科数据爬取与预处理

中文维基百科数据爬取与预处理  前言:阅读本篇博文,您将学会如何使用scrapy框架并基于层次优先队列的网页爬虫以及维基页面的结构与半结构数据自动抽取。项目已经开源于GitHub地址:https://github.com/wjn1996/scrapy_for_zh_wiki,欢迎Star或提出PR。  维基百科(wikipedia) 是目前最大的开放式开放领域百科网站之一,包含包括英文、中文等多种语言。现如今在众多人工智能自然语言处理任务中均取自于维基百科,例如斯坦福大学开源的机器阅读理解评测数据集S

2020-11-26 22:42:59 82 1

原创 论文解读:QANet: Combine Local Convolution with Global Self-Attention for Reading Comprehension

QANet: Combine Local Convolution with Global Self-Attention for Reading Comprehension简要信息:序号属性值1模型名称QANet2所属领域问答系统,自然语言处理3研究内容机器阅读理解4核心内容self-attention; layer-normalization; CNN5GitHub源码https://github.com/search?q=QANet

2020-11-17 11:29:29 50

原创 论文解读: R3:Reinforced Ranker-Reader for Open-Domain Question Answering

论文解读: R3R^3R3:Reinforced Ranker-Reader for Open-Domain Question Answering  开放领域问答主要目标是从开放的资源中寻找答案,在目前自动问答任务中十分关键。本文是一篇2017年AAAI会议的问答系统,其认为当前大多数的问答都是基于事先提取好的候选文本作为抽取答案的passage,而并不符合实际应用;而在实际中,需要结合信息检索方法来自主地搜索与问题相关的passage并进行答案的抽取,这一过程非常繁琐,且依赖于检索的候选passage的

2020-11-11 11:18:49 84 1

原创 远程服务器docker部署Flask+MongoDB项目

远程服务器docker部署Flask+MongoDB项目  最近学习了一下如何在远程服务器的docker内部署一个python的flask项目,为了能完成部署,你需要具备如下几个条件:拥有一个可以运行的flask项目;拥有一个远程的linux内核服务器,可以是centos、ubuntu等系统;服务器上已经安装好docker;  下面我们开始一步步部署我们的flask的项目:第一步:拉取镜像  可以去 Docker Hub 上寻找想要的镜像列表,例如可以直接搜Flask或MongoDB现成的

2020-11-07 16:30:41 46 1

原创 R-Net:问答系统机器阅读理解

R-Net:问答系统机器阅读理解摘要:问答系统在当前学术界和工业界都非常具有研究和应用价值的任务,本文分享一篇2017年的端到端的问答系统经典之作——R-Net。该工作在当时的SQuAD1.1的测试集上达到最优结果。一、SQuAD  SQuAD是斯坦福NLP开放的一个机器阅读理解(文档问答系统)的评测数据集,最初是SQuAD1.1版本,现如今已经根据学术界的意见更新到SQuAD2.0版本。该数据集开源的官网是SQuAD2.0,只提供训练集和验证集,提交模型后会在测试集上进行验证,可以参与刷榜排名。本文

2020-11-04 21:10:17 54 1

原创 论文解读:MeLU:Meta-Learned User Preference Estimator for Cold-Start Recommendation

论文解读:MeLU:Meta-Learned User Preference Estimator for Cold-Start Recommendation  推荐领域内的一个痛点问题是冷启动问题,现如今许多学术界在推荐领域内的研究都指向该问题。事实上,冷启动可以认为是一种由于用户-物品交互数据缺乏所导致的,自然而然可以想到利用小样本学习的方法,使得我们训练的模型可以在很少的样本前提下就能够给出较好的推荐效果。一、简要信息序号属性值1模型名称MeLU2所属领域推荐系

2020-10-30 12:14:06 91

原创 论文解读:Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text

论文解读:Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text  知识库问答通常存在一个问题,就是由于知识库不充分导致在一定的推理范围内无法找到相应的答案,因此,可以通过引入额外非结构化文本做辅助增强。本文提出一种开放领域的知识库和文本问答方法。一、简要信息序号属性值1模型名称GRAFT-Nets2所属领域自然语言处理3研究内容知识库问答4核心内容

2020-10-23 11:25:42 71

原创 pycharm与ssh远程访问服务器docker

pycharm与ssh远程访问服务器docker  背景:有些实验需要在服务器上完成,因此为了快速便利地在本地调试远程服务器上的代码,需要完成本地与远程服务器的直连。然而现阶段诸多服务器上安装有docker,通常需要在docker内完成调试代码,因此本文主要提供远程访问服务器docker的配置方法。  需要工具及说明:pycharm:集成开发工具ssh:远程访问工具docker:容器1、配置远程服务器docker第一步:购置配置服务器(如果已有服务器跳过)  可自行在阿里云或腾讯云等服务

2020-10-09 17:37:35 923 3

原创 基于监督学习和远程监督的神经关系抽取

神经关系抽取技术综述作者:王嘉宁  QQ:851019059  Email:lygwjn@126.com  关系抽取作为自然语言处理重要的研究领域之一,一直以来受到国内外诸多高校、科研机构的高度关注。近些年来的ACL、EMNLP、AAAI、IEEE、ICDE、IJCAI等顶会,以“Relation Extraction”或“Relation Classification”为关键字的论文逐年增加...

2020-09-27 22:03:37 2793 8

原创 A survey on Few-shot Learning (小样本学习)

A survey on Few-shot Learning (小样本学习)  机器学习已经成功地在数据密集型任务上得以应用,但通常却不能够处理数据很少的情况。最近,小样本学习(Few-shot Learning,FSL)被提出用于解决这个问题。在先验知识的基础上,FSL可以有效的涵盖一个只有极少监督信息数量样本的新任务。本文,我们将对小样本学习FSL进行一个系统的梳理。首先给出FSL一个形式化的定义,其次根据相关机器学习的问题进行分类,同时指出一个核心的关键问题即小样本学习不能依赖于传统的经验风险最小化的

2020-09-25 17:39:11 241 1

原创 抖音推荐的背后原理——大数据+推荐

抖音推荐的背后原理——大数据+推荐  大数据作为当前热门的话题,在软件开发与人工智能领域的敲门砖,各大厂都需要接触过大数据应用项目的人才。本文以大数据处理为出发点,浅层地讲述抖音推荐的背后原理。关键词:大数据、推荐系统、关系图谱、数据中台、联邦学习什么是大数据?  大数据具备5V特性分别是:(1)Volume:数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。(2)Variety:种类和来源多样化。包括结构化、半结构化

2020-09-22 12:11:43 1173

原创 2020第十七届华为杯数模C题——P300脑电信号数据预处理算法

脑电信号数据预处理  这两天的数学建模选的C题,目标是要处理脑电P300信号的数据并进行相关预测任务。该题重点是数据预处理,因此根据最后实验的结果,分享相关的预处理方法以及源代码。长话短说,给出任务的简单描述、分析方法以及相关源代码。关于2020年第十七届华为杯研究生数学建模所有赛题可前往: (https://pan.baidu.com/s/19O9J_0tnWumMe47zqk3jMg ,提取码:xx3j),赛题解压码为  任务描述:脑机接口是通过计算机检测人脑活动的系统,其通过对人体大脑各个通道检测

2020-09-21 14:50:26 606 1

原创 【算法编程】和为 K 的最少斐波那契数字数目

【算法编程】和为 K 的最少斐波那契数字数目  给定k个数,其满足斐波那契性质,从中挑选一部分数字(每个数只能被挑选1次)使得它们的和恰巧为k。目标是求出最少能够挑选几个数满足这个条件。k取值范围为 1≤k≤1091\leq k\leq10^91≤k≤109 。  试题来源: LeetCode.1414  难度:★★★☆☆【输入】k=7【输出】2【解析】斐波那契数字为:1,1,2,3,5,8,13,……,对于 k = 7 ,我们可以得到 2 + 5 = 7 。C++源代码: class

2020-09-14 20:32:01 32

原创 【推荐系统】RippleNet——基于知识图谱偏好传播的推荐系统

【推荐系统】RippleNet——基于知识图谱偏好传播的推荐系统论文名称:《RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems》PDF:https://arxiv.org/pdf/1803.03467源码地址:https://github.com/hwwang55/RippleNet.一、前言  推荐系统(Recommender System, RS)作为最经典最重要的人工智

2020-09-13 22:19:39 358

原创 论文解读:Are Noisy Sentences Useless for Distant Supervised Relation Extraction?

论文解读:Are Noisy Sentences Useless for Distant Supervised Relation Extraction?  远程监督关系抽取普遍遭受噪声的影响,先前的工作一直关注如何降低噪声对分类产生的错误影响,例如通过多示例学习以及句子级别的注意力机制,或者使用强化学习、对抗学习直接过滤噪声等。本文则完全从新的角度出发——是否可以将那些可能是噪声的标签纠正,这样即不会降低语料的数量,也能直接提升语料的质量。一、简要信息序号属性值1模型名称DC

2020-09-02 21:06:55 111

原创 论文解读:Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings

论文解读:Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings  知识库问答(KBQA/KGQA)是指给定一个自然语言问句和对应的知识库,试图从知识库中返回对应正确的答案。现如今一些方法是通过对问句中的候选实体在知识库中对齐,并获得一定跳数范围内的子图,通过排序算法或TopK算法等获得有可能的答案。但是有时候知识库是不充分的,某些目标答案需要经过非常长的推理路径才能获得,而在

2020-08-20 16:02:26 567

原创 k近邻算法

k近邻算法  k近邻算法是一个基本的分类回归方法,其没有显式的学习过程,而是完全取决于数据,因此k近邻是基于数据的学习算法,其只有唯一的一个参数 k(k>0,k∈N+)k(k>0,k\in\mathbb{N}_+)k(k>0,k∈N+​) 。1、k近邻算法  给定一组已知数据 T={(xi,yi)}i=1i=NT=\{(x_i,y_i)\}_{i=1}^{i=N}T={(xi​,yi​)}i=1i=N​,其中 xix_ixi​ 表示样本的特征向量,yiy_iyi​ 是对应的标签。通

2020-08-15 15:40:58 78

原创 论文解读:Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question

论文解读:Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question  知识图谱问答的任务目标是在给定一个自然问句以及对应的知识库下,找到正确的答案(实体)。本文则通过多任务学习的框架,利用多视角注意力机制完成知识图谱问答任务。1、什么是知识图谱?  知识图谱是近年来非常热门的研究内容,现如今可以和自然语言处理、计算机视觉一并作为一个新的研究领域。知识图谱通常可以抽象为知识

2020-08-14 21:11:38 159

原创 论文解读:Graph Convolutional Networks for Text Classifification

论文解读:Graph Convolutional Networks for Text Classifification  先前的文本分类方法是基于CNN或RNN进行的,只能单独的对文本自身的上下文进行语义提取,而不能够对文本之间的相关信息进行表示。随着图结构在NLP领域的大放光彩,将图引入文本分类是新的思路。一、简要信息序号属性值1模型名称Text-GCN2所属领域自然语言处理3研究内容文本分类4核心内容Text Classification,

2020-08-06 14:31:47 206

原创 基于PCA的图像压缩实现

基于PCA的图像压缩实现注:该内容为校内课程实验,仅供参考,请勿抄袭!源码:PPCA-for-Image-Compession摘要  随着计算机互联网的发展和数据的日益增长,如何高效的处理和传输海量数据成为大数据处理的瓶颈问题,尤其对于图像类数据,通常其占有空间大,包含信息量丰富,如何对图像数据进行压缩吸引广大研究者们的注意。本文通过调研PCA图像压缩的相关工作,认为当前方法依赖于整个数据集,压缩效率低、占据内存量大的问题,本文提出一种分片PCA(P-PCA)图像压缩算法,旨在通过对图像进行分片,并

2020-08-02 17:50:10 301

原创 对话生成的新探索——从模仿学习到逆强化学习

论文解读:Dialogue Generation: From Imitation Learning to Inverse Reinforcement Learning  对话生成是一个常见的自然语言处理任务,其在工业界广泛应用与智能客服,闲聊机器人等。现如今主要研究于如何提高对话的质量,多样性。本文则采用先进的技术试图解决这个问题。一、简要信息序号属性值1模型名称DG-AIRL2所属领域自然语言处理3研究内容对话生成4核心内容Dialogue G

2020-08-02 16:09:19 154

原创 关联规则常用算法
原力计划

关联规则常用算法  关联规则(Association Rules)是海量数据挖掘(Mining Massive Datasets,MMDs)非常经典的任务,其主要目标是试图从一系列事务集中挖掘出频繁项以及对应的关联规则。关联规则来自于一个家喻户晓的“啤酒与尿布”的故事,本文通过故事来引出关联规则的方法。啤酒与尿布的故事  在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家

2020-07-03 15:53:41 682 2

原创 手写数字识别Mnist的Pytorch实现

手写数字识别Mnist的Pytorch实现注:该内容为校内课程实验,仅供参考,请勿抄袭!源码地址:一、引言(Introduction)  手写数字识别时经典的图像分类任务,也是经典的有监督学习任务,经常被用于测试图像的特征提取效果、分类器性能度量等方面,本文将通过应用机器学习和深度学习算法实现手写数字识别。  图像分类任务是指给定一张图像来对其进行分类,常见的图像分类任务有手写数字识别、猫狗分类、物品识别等,图像分类也是计算机视觉基本的分类任务。而对于手写数字识别任务来说,可以当做图像分类问题,也

2020-07-02 23:20:09 712

原创 论文解读:Improved Neural Relation Detection for Knowledge Base Question Answering
原力计划

论文解读:Improved Neural Relation Detection for Knowledge Base Question Answering  本文解决KBQA中的子问题——Relation Detection(关系检测)。关系检测目的是给定一个问句,根据知识库来判断该问句目标的关系是什么。例如问句“中国的首都是哪里”,我们会先锁定问句的中心实体(主题词)是“中国”,其次检测这句话目标是问与“中国”这个实体具有“首都”关系的实体,因此类似于知识图谱的补全工作:(中国,首都,?)。因此关系检测

2020-06-19 11:47:54 382

原创 [PPT]一种在多核环境下用于大规模线性分类的并行对偶坐标下降法

一种在多核环境下用于大规模线性分类的并行对偶坐标下降法  课程需要完成阅读一篇文章,因此挑选本篇论文作为讲解,论文名称为《Parallel Dual Coordinate Descent Method for Large-scale Linear Classification in Multi-core Environments》,下载地址:https://www.csie.ntu.edu.tw/~cjlin/papers/multicore_cddual.pdf在这里插入

2020-06-15 17:56:54 72

原创 论文解读:Knowledge Base Relation Detection via Multi-View Matching
原力计划

论文解读:Knowledge Base Relation Detection via Multi-View Matching

2020-06-05 11:02:48 243

原创 论文解读:Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader

论文解读:Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader  知识库问答(KBQA)是一种领域问答系统(Domain QA),基本原理是给定一个问句和一个知识库,从知识库中找到对应的答案实体。考虑到知识库是不充分的,该工作则结合非结构化文本来解决一些问句无法直接在知识库中寻找答案的问题。一、简要信息序号属性值1模型名称SGR EADER + KAR EADER2所属

2020-06-04 10:57:43 300

原创 HeapSort堆排序原理与实现

HeapSort堆排序原理与实现  堆排序是比较重要的数据结构,其主要优点是通过排序二叉树的特性能够记录每个数之间的大小关系,以至于不需要重复比较,对于海量数据排序问题可以减少时间复杂度。一、基本概念(1)大根堆(大顶堆):对于一个堆(完全二叉树),根结点的值是比所有结点的值都大,其子树中根结点的值也比子树中其他值都大。大根堆可以获得由小到大的递增序列;其定义为:A[i]≥A[2∗i]A[i]\ge A[2*i] A[i]≥A[2∗i]A[i]≥A[2∗i+1] A[i]\ge A[2*i+1]A

2020-06-03 09:48:45 123

原创 论文解读:A Hierarchical Framework for Relation Extraction with Reinforcement Learning

论文解读:A Hierarchical Framework for Relation Extraction with Reinforcement Learning  关系抽取是一项比较基础的自然语言处理任务,而联合实体和关系抽取则是一种端到端的方法。传统的方法基本上是先通过实体识别再进行关系抽取,但这容易导致误差传播。为了能够有效提高抽取的效果,本文提出一种基于分层的强化学习框架用于关系抽取。一、简要信息序号属性值1模型名称HRL-RE2所属领域自然语言处理3

2020-05-30 10:45:40 383 3

转载 [转载收藏]随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

本文仅为转载收藏,供个人学习。转载地址:https://www.cnblogs.com/xbinworld/p/4266146.html本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅。其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:)背景随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation)。这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密

2020-05-12 20:08:43 79

原创 强化学习(八):Dyna架构与蒙特卡洛树搜索MCTS

强化学习(八):Dyna架构与蒙特卡洛树搜索MCTS  在基于表格型强化学习方法中,比较常见的方法有动态规划法、蒙特卡洛法,时序差分法,多步引导法等。其中动态规划法是一种基于模型的方法(Model-based),因为它的前提是必须要知道所有状态和动作以及奖励的分布;后面的几种方法则是基于采样的方法,试图让智能体通过与环境交互来获得经验,从经验中推出相关的策略。因此本节对相关内容进行一个简单的总结...

2020-04-19 15:32:50 237

原创 强化学习(七):n步自举法(多步引导法)
原力计划

强化学习(七):n步自举法(多步引导法)  在之前,我们知道求解有限马尔可夫决策过程可以通过蒙特卡洛和时序差分来通过与环境多次交互从经验中学习,然而,蒙特卡洛方法在一些不满足分幕式任务或连续型任务上无法获得最终的收益,因此我们引入时序差分方法。时序差分的思想就是将下一时刻的状态价值或下一时刻的状态动作价值作为估计值,用于估计当前状态价值或动作价值。时序差分是一种结合采样和自举的方法,那么一种介于...

2020-04-13 17:21:20 611

原创 论文解读:Reinforcement Learning for Relation Classification from Noisy Data

论文解读:Reinforcement Learning for Relation Classification from Noisy Data  本文是一篇以强化学习来解决远程监督关系抽取中噪声的问题。强化学习作为一个比较新的机器学习,能够很好的处理一些半监督类问题,强化学习是一种从经验中学习的方法,通过定义策略、状态、动作以及收益来训练智能体与环境的交互,在游戏博弈等场景中很受欢迎。本文则将其...

2020-04-06 16:41:44 668

原创 强化学习(六):时序差分方法
原力计划

强化学习(六):时序差分方法  时序差分(TD)方法结合了动态规划与蒙特卡洛的思想,其可以像蒙特卡洛方法一样直接从智能体与环境互动的经验中学习,而不需要知道环境的模型,其又可以像动态规划一样无须等待交互的结果,可以边交互边学习。总的来说,时序差分是基于已得到的其他状态的估计值来更新当前状态的价值函数。如果没有学习动态规划部分,可以浏览博文强化学习(四):基于表格型动态规划算法的强化学习,如果没有...

2020-04-06 10:07:32 353

Movie Review.rar

免费提供NLP情感分析数据集Movie Review。Pytorch实现版本代码可详情:https://blog.csdn.net/qq_36426650/article/details/105172198

2020-04-25

NYT(New York Times)Dataset for Distant Supervision Relation Extraction

我们提供NYT数据集,该数据集一共包含233081实体对,由FreeBase对齐,关系数量为57(如果使用53关系的可自行过滤多余的关系及句子)。

2020-03-20

50道习题源程序.zip

50道C++面向对象的程序设计题库及参考源码,可在vc6.0或devc++上使用,若无法编译运行尝试更改头文件。

2019-12-02

SemEval2010_task8_all_data.rar

关系抽取数据集,公开数据集,主要为监督学习方法。一共包含8000个训练句子、2717个测试句子,目前在测试集上最好结果f1值为89.5.

2019-11-24

数据结构图谱构建与关系抽取数据集.rar

本数据集主要提供对数据结构学科知识图谱的构建,主要包含500+数据结构方面的知识实体,9种关系,176000+示例,16000+实体对,已标注好3676个实体对关系。通过模型学习已标注的实体对来对未知实体对进行关系抽取,实现最终的图谱构建。 对应博客:https://blog.csdn.net/qq_36426650/article/details/87719204

2019-11-11

GWE中文词向量

使用GWE(中文字形特征提取)预训练词向量(1.6GB维基百科语料),维度为300,词汇量约13000,文件大小为41.2MB

2019-09-28

glove中文词向量

使用glove预训练词向量(1.6GB维基百科语料),维度为300,词汇量约13000,文件大小为41.2MB

2019-09-28

word2vec中文词向量

使用gensim对维基百科作为预训练语料(约1.6G语料),生成词汇量约13000个词汇,维度为300,文件大小为45.6MB。使用方法,参考博客:https://blog.csdn.net/qq_36426650/article/details/87738919

2019-09-28

自然语言处理数据集——初中数学学科

提供高中数学学科的知识数据集,包含6661个样本和706个实体,提供了基于该数据集的实体关系数据库(一共12种关系,11250个实体关系对)。该数据集可用于基于高中数学学科的知识图谱的构建,包含命名实体识别、实体关系抽取、文本分类等任务。

2019-02-19

自然语言处理数据集——高中数学学科

提供高中数学学科的知识数据集,包含2232个样本和2399个实体,提供了基于该数据集的实体关系数据库(一共12种关系,11250个实体关系对)。该数据集可用于基于高中数学学科的知识图谱的构建,包含命名实体识别、实体关系抽取、文本分类等任务。

2019-02-19

SSM框架整合jar包,还包括上传文件、JSTL、mysql、linux远程访问和ftp文件传输jar包

本人经常开发SSM框架的中小型系统,涉及到的jar包整合在一起,仅需导入这些jar包到lib目录下即可,无需东找西找。jar包包括Spring,SpringMVC,MyBatis,以及上传文件、mysql数据库,远程上传ftp等工具包

2018-11-20

《计算机操作系统》学习资料及实验

《计算机操作系统》课程学习资料,包括PPT,相应实验内容及源码,适合课程自学,期末复习,实验报告完成及考研或面试等

2018-11-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除