一、前言
离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。
其基本思想就是在众多可能的情况中,只考虑需要用的值。
离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法。
二、离散化算法的介绍
离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。
通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。
离散化本质上可以看成是一种哈希
三、离散化算法的运用
运用情况
数的值域跨度范围很大,但数的个数很少,通常会差几个数量级
关于unique():
四、示例(Example)
使用前需排序
所有不重复的元素排在数组的最前面,数组末尾未占用的位置保留原来的值。
返回值是不重复的元素个数(标准说法是去重之后的尾地址),即重复元素的第一位,便于erase对其进行删除。
vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 从小到大排序
alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 序列去重
// 二分求出x对应离散化后的值
int find(int x) { // 找出第一个大于等于x的位置
int l = 0, r = alls.size() - 1;
while (l < r) {
int mid = l + r >> 1;
// x在哪,区间就往哪里缩
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1; // 映射到1, 2, ...n
}
例题:
详细解答: