Python与自然语言处理库NLTK实战

本文介绍了Python中的自然语言处理库NLTK,包括其在文本处理、词性标注、词干提取、命名实体识别以及文本相似度计算等方面的应用。通过实例展示了如何使用NLTK进行句子分割、单词分割、词性标注等操作,同时探讨了词袋模型和余弦相似度在计算文本相似度中的应用。
摘要由CSDN通过智能技术生成

一、NLTK概述

自然语言处理(Natural Language Processing,简称NLP)是计算机科学和人工智能领域的重要研究方向,旨在让计算机能够理解、处理和生成自然语言。而NLTK(Natural Language Toolkit,自然语言工具包)则是Python语言中一个广泛使用的自然语言处理库,它提供了大量的自然语言处理工具和数据集,是进行自然语言处理研究和应用开发的重要工具。NLTK最初由史丹福大学的 Steven Bird、Edward Loper 和 Ewan Klein等人开发,目前已成为自然语言处理界最受欢迎的库之一。

二、NLTK基础应用

NLTK提供了多种功能模块,如文本处理、词汇分析、语法分析、语义分析、机器学习等,下面将结合实例介绍其中一些常用的模块。

  1. 文本处理

在NLP中,常用的是对文本进行分词、词性标注、命名实体识别等处理。NLTK文本处理模块提供了多种方法,常用的有sent_tokenize()进行句子分割,word_tokenize()进行单词分割,pos_tag()进行词性标注等。

句子分割

句子分割常用的方法是以句号、问号、感叹号等标点符号作为分界符,将文本分割成多个句子。在NLTK中使用sent_tokenize()函数进行句子分割。

import nltk
nltk.dow
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CrMylive.

穷呀,求求补助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值