- 博客(88)
- 收藏
- 关注
原创 Python 编程中的 SOLID 原则
设计原则为软件开发提供指导,但在实际项目中,开发者需灵活应用,合理评估和取舍,以保证代码质量和项目进度。
2025-04-25 15:44:54
1006
原创 Python设计模式:MVC模式
MVC 模式是一种软件架构模式,用于将应用程序分为三个主要部分:模型(Model)、视图(View)和控制器(Controller)。这种分离使得应用程序的结构更加清晰,便于管理和扩展。
2025-04-24 17:58:01
1318
原创 Python 设计模式:回调模式
回调函数是指作为参数传递给另一个函数的函数。当这个函数执行到某个特定的点时,它会调用这个回调函数。回调函数通常用于处理异步操作、事件处理或在某些条件下执行特定的操作。
2025-04-22 19:58:03
809
原创 Python设计模式:对象池
对象池设计模式是一种创建型设计模式,主要用于管理和复用对象,以提高性能和资源利用率。它通过维护一个对象的集合(池),来避免频繁地创建和销毁对象,从而减少内存分配和垃圾回收的开销。对象池通常用于那些创建和销毁成本较高的对象,例如数据库连接、线程、网络连接等。对象池的基本工作原理如下:对象池的优点:对象池的缺点:对象池通常用于以下场景:数据库连接类: 类模拟数据库连接,提供 和 方法。连接池类: 类管理数据库连接的池。它在初始化时创建一定数量的连接,并提供获取和释放连接的方法。可用连接计数: 方法返
2025-04-22 19:02:13
1087
原创 Python 设计模式:桥接模式
桥接模式的核心思想是将一个类的接口与其实现分离,使得两者可以独立变化。通过引入一个桥接接口,客户端可以通过这个接口来操作不同的实现,而不需要关心具体的实现细节。桥接模式是一种结构型设计模式,它通过将抽象部分与其实现部分分离,使得两者可以独立变化。桥接模式的核心思想是将抽象和实现解耦,从而提高系统的灵活性和可扩展性。类实现了具体的圆形类,并包含对实现部分的引用。类定义了实现部分的接口。类定义了抽象部分的接口,
2025-04-22 18:21:22
475
原创 Python 设计模式:模板模式
模板模式不仅仅是面向对象的继承机制,它是一种设计思想,强调算法的结构和步骤的复用。通过使用模板模式,我们可以提高代码的可维护性和可扩展性,避免代码重复,并使得系统在面对变化时更加灵活。理解模板模式的目的和应用场景,可以帮助我们在设计软件时做出更好的决策。
2025-04-22 18:02:50
854
原创 Python 设计模式:访问者模式
访问者模式是一种行为设计模式,它允许你在不改变对象结构的前提下,定义新的操作。通过将操作封装在访问者对象中,访问者模式使得你可以在不修改元素类的情况下,向元素类添加新的功能。访问者模式的核心思想是将操作与对象结构分离。通过引入一个访问者对象,允许你在不修改对象结构的情况下,定义新的操作。这样可以提高系统的灵活性和可扩展性。
2025-04-22 17:35:32
996
原创 Python 设计模式:享元模式
享元模式是一种结构型设计模式,旨在通过共享对象来减少内存使用和提高性能。它特别适用于需要大量相似对象的场景,通过共享相同的对象来避免重复创建,从而节省内存和提高效率。isCircleradiusCircledrawShape类定义了享元对象的接口,包含一个draw方法。CircleShapedrawradiusCirclecircle1circle2类负责管理Circle对象的创建。每当请求一个圆形时,如果该半径的圆形已经存在,则返回共享的对象;否则,创建一个新的对象并存储。
2025-04-22 16:42:58
862
原创 Python设计模式:备忘录模式
备忘录模式是一种行为设计模式,它允许在不暴露对象内部状态的情况下,保存和恢复对象的状态。备忘录模式的核心思想是将对象的状态保存到一个备忘录对象中,以便在需要时可以恢复到之前的状态。这种模式通常用于实现撤销操作或历史记录功能。
2025-04-22 11:49:53
534
原创 Python设计模式:命令模式
命令模式是一种行为设计模式,它将请求封装为一个对象,从而使您能够使用不同的请求、队列或日志请求,以及支持可撤销操作。命令模式的核心思想是将请求的发送者与请求的接收者解耦,使得两者之间的交互更加灵活。
2025-04-10 19:05:07
1161
原创 Python设计模式:工厂模式
抽象工厂模式提供一个接口,用于创建一系列相关或相互依赖的对象,而无需指定它们的具体类。抽象工厂模式通常用于需要创建多个相关对象的场景。# 产品接口passpass# 具体产品类# 抽象工厂接口passpass# 具体工厂类# 客户端代码print(product_a1.operation_a()) # 输出: Result of ConcreteProductA1。
2025-04-09 19:07:09
1079
原创 如何在多线程中安全地使用 PyAudio
在多线程环境下使用 PyAudio 可能会导致段错误(Segmentation Fault)或其他不可预期的行为。这是因为 PyAudio 在多线程环境下可能会出现资源冲突或线程安全问题。PyAudio 是一个用于音频输入输出的 Python 库,它依赖于 PortAudio 库。在多线程环境下,如果多个线程同时创建和销毁PyAudio实例,可能会导致资源冲突,从而引发段错误。在多线程环境下,尽量避免在每个线程中创建和销毁PyAudio实例。相反,应该在主线程中创建一个共享的PyAudio。
2025-04-08 20:04:39
896
原创 Python设计模式:策略模式
策略模式(Strategy Pattern)是一种行为型设计模式,它定义了一系列算法,将每个算法封装起来,并使它们可以互换。策略模式使得算法的变化独立于使用算法的客户。换句话说,策略模式允许在运行时选择算法的实现,从而提高了代码的灵活性和可维护性。:定义了支付的公共接口,所有具体支付策略都实现这个接口。它包含一个pay方法,接受支付金额作为参数。:实现了策略接口的具体支付方式,封装了各自的支付逻辑。每个具体策略都实现了pay方法,提供了不同的支付处理方式。
2025-04-07 20:13:51
619
原创 Python设计模式:适配模式
适配模式(Adapter Pattern)是一种结构型设计模式,它允许将一个类的接口转换成客户端所期望的另一种接口。适配模式使得原本由于接口不兼容而无法一起工作的类可以协同工作。换句话说,适配模式充当了一个桥梁,允许不同接口的类之间进行交互。在软件开发中,常常会遇到需要使用现有类的情况,但这些类的接口与我们需要的接口不匹配。适配模式提供了一种解决方案,通过创建一个适配器类,将不兼容的接口进行适配,从而使得不同的类可以一起工作。
2025-04-07 18:49:03
476
原创 Python设计模式:代理模式
代理模式(Proxy Pattern)是一种结构型设计模式,它为其他对象提供一种代理以控制对这个对象的访问。代理模式通过引入一个代理对象来间接访问真实对象,从而在不改变真实对象的情况下,增加对其访问的控制和管理。在软件开发中,直接访问某个对象可能会涉及到复杂的操作、资源管理或安全问题。例如,在处理大型对象时,可能不希望在程序启动时就加载所有数据,而是希望在真正需要时才进行加载。此外,某些对象可能需要进行权限检查、日志记录或其他操作,这些都可以通过代理模式来实现。
2025-04-07 17:12:36
318
原创 Python设计模式:构建模式
构建模式(Builder Pattern)是一种创建型设计模式,它允许使用多个简单的对象一步步构建一个复杂的对象。构建模式通过将构建过程与表示分离,使得同样的构建过程可以创建不同的表示。换句话说,构建模式提供了一种灵活的方式来创建复杂对象,避免了构造函数参数过多的问题。
2025-04-07 16:58:09
821
原创 Python设计模式:组合模式
组合模式(Composite Pattern)是一种结构型设计模式,它允许将对象组合成树形结构以表示“部分-整体”的层次关系。组合模式使得客户端对单个对象和组合对象的使用具有一致性。换句话说,组合模式可以让客户端以相同的方式对待单个对象和对象的集合。在组合模式中,组件(Component)是一个抽象类或接口,定义了所有具体组件和组合的接口。叶子(Leaf)是组合中的基本元素,不能再包含其他子元素。组合(Composite)则是可以包含子组件的对象,能够实现对其子组件的操作。
2025-04-07 11:38:20
983
原创 Python 设计模式:迭代模式
在实际项目中,自定义迭代模式可以用于处理复杂的数据结构,例如树形结构、图形结构或其他自定义集合。以下是一个稍微复杂一点的示例,展示如何使用迭代模式来遍历树形结构,并体现迭代模式的优势。假设我们有一个表示组织结构的树形结构,每个节点代表一个员工,包含员工的姓名和下属员工。我们希望能够遍历这个组织结构,获取所有员工的姓名。self.stack = [root] # 使用栈来存储待遍历的节点current = self.stack.pop() # 获取当前节点。
2025-04-03 18:03:24
1182
原创 Python 设计模式:外观模式
外观模式(Facade Pattern)是一种结构型设计模式,它为复杂的子系统提供一个简单的接口。通过定义一个高层接口,外观模式使得子系统更易于使用,从而隐藏了系统的复杂性。外观模式通常用于简化与多个类或模块的交互,使得客户端代码能够更方便地使用这些复杂的系统。在软件开发中,随着系统的复杂性增加,多个类和模块之间的交互可能会变得非常复杂。客户端需要了解多个类的细节才能完成某个操作,这不仅增加了代码的复杂性,也降低了可维护性。
2025-04-03 11:54:57
315
原创 论文解读:A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech
近年来,基于深度学习的语音增强方法在性能上已经远远超过了传统的基于谱减法和谱估计的方法。这些新技术大多直接在短时傅里叶变换(STFT)域中操作,导致计算复杂度很高。本文提出了一种名为PercepNet的高效方法,它基于人类对语音的感知,重点关注语音的频谱包络和周期性。我们展示了高质量的实时全频带(48 kHz)语音增强,其计算复杂度不到一个CPU核心的5%。
2025-04-02 20:33:36
724
原创 Python设计模式:责任链模式
责任链模式(Chain of Responsibility Pattern)是一种行为型设计模式,它允许将请求的发送者和接收者解耦。通过将多个处理对象连接成一条链,责任链模式可以让请求沿着这条链传递,直到有一个对象处理它为止。这种模式的核心思想是将请求的处理逻辑分散到多个处理者中,每个处理者负责处理特定类型的请求。
2025-04-01 19:09:57
1133
原创 Python设计模式:克隆模式
克隆模式的核心思想是通过复制一个已有的对象(原型)来创建一个新的对象(克隆)。这种方式可以避免重复的初始化过程,从而提高效率。clone。
2025-04-01 11:44:27
1018
原创 Python设计模式:装饰模式
装饰模式是一种设计模式,它通过将对象包装在一个装饰器类中来实现功能的扩展。装饰器类可以在调用原始对象的方法之前或之后添加额外的行为。这种方式使得我们可以在运行时动态地改变对象的行为,而不需要修改对象的代码。装饰模式的核心思想是“将功能分离”。通过将功能封装在不同的装饰器中,我们可以灵活地组合这些装饰器,从而实现复杂的功能。这种方式不仅提高了代码的复用性,还使得系统的扩展变得更加简单。在 Python 中,装饰器是一种特殊的函数,用于在运行时动态地修改或增强其他函数或方法的功能。记录日志。
2025-03-28 17:29:30
289
原创 Python设计模式:中介模式
中介模式是一种行为设计模式,它通过引入一个中介对象来协调多个对象之间的交互。中介者负责管理对象之间的通信,避免了对象之间的直接引用,从而降低了系统的复杂性和耦合度。
2025-03-28 12:59:39
596
原创 Python设计模式:状态模式
状态模式是一种行为设计模式,它允许对象在其内部状态改变时改变其行为。换句话说,状态模式使得一个对象在其状态改变时能够表现得就像是改变了其类。
2025-03-26 11:33:01
949
原创 Python设计模式:监听模式
监听模式(Observer Pattern)是一种行为设计模式,允许对象(称为“观察者”或“监听者”)在另一个对象(称为“被观察者”或“主题”)的状态发生变化时接收通知。这种模式的核心思想是解耦,使得被观察者和观察者之间没有直接的依赖关系,从而提高系统的灵活性和可维护性。在监听模式中,观察者可以动态地注册和注销到被观察者。当被观察者的状态发生变化时,它会通知所有注册的观察者,观察者可以根据需要执行相应的操作。这种模式特别适用于需要处理异步事件的场景,例如用户界面事件、数据变化通知等。
2025-03-19 18:03:10
1035
原创 Python设计模式:单例模式
我们将创建一个Logger类,使用单例模式确保只有一个日志记录器实例。该类将提供记录日志的功能,并将日志输出到文件中。import os# 使用示例print(logger1 is logger2) # 输出: True,两个变量指向同一个实例。
2025-02-21 17:42:30
714
原创 模型可视化技术:特征图与热力图
在深度学习领域,尤其是计算机视觉任务中,模型的可解释性和透明性变得越来越重要。可视化特征图和热力图是两种有效的技术,能够帮助研究人员和开发者理解模型的内部工作原理。本文将介绍可视化特征图和热力图的目的、实现方法,并提供简单的代码示例。
2025-02-06 18:27:06
1508
原创 Deepseek本地部署指南:在linux服务器部署,在mac远程web-ui访问
32B 模型在推理基准测试中表现优异,接近 70B 模型的推理能力,但对硬件资源需求更低。通过上面的步骤,已经可以直接在 Linux服务器通过命令行的形式使用Deepseek了。设置OLLAMA_HOST=0.0.0.0环境变量,这使得Ollama服务能够监听所有网络接口,从而允许远程访问。为了确保您的Linux服务器允许从外部访问Ollama服务,您需要配置防火墙以允许通过端口11434的流量。在完成上述配置后,您可以通过远程设备(如Mac)测试对Ollama服务的访问。
2025-02-06 08:52:57
32818
32
原创 U-Net解析:含代码实现
U-Net 是一种用于图像分割的卷积神经网络架构,其设计旨在处理生物医学图像分割任务。U-Net 的网络结构具有对称性,包含编码器和解码器两个主要部分,并通过跳跃连接(skip connections)将两者连接起来。U-Net 网络结构因其对称性而得名,形似英文字母 “U”。整个网络架构由蓝色和白色框表示特征图(feature map),不同颜色的箭头则代表了不同的操作和连接方式。
2025-01-23 20:01:17
2880
1
原创 不同音频振幅dBFS计算方法
人耳对声音的感知是非线性的,通常对响度变化的感知与实际的物理振幅变化不成正比。该程序实现了音频分析与音量调整功能,能够计算音频文件的总、最大、最小、平均 RMS 和峰值幅度,并根据用户指定的不同类型目标 dBFS 值自动调整音频的音量。最大 RMS 是通过将音频信号分成多个窗口,计算每个窗口的 RMS 值,并返回这些值中的最大值。最小 RMS 与最大 RMS 类似,但它返回的是每个窗口中计算出的最小 RMS 值。平均 RMS 是所有窗口 RMS 值的平均值,提供了音频信号的整体响度水平。
2025-01-10 15:58:33
1829
2
原创 音频数据增强:提升音频信号质量的多种技术
在音频处理和机器学习领域,音频数据增强是一种常用的技术,旨在通过对原始音频信号进行各种变换和处理,生成更多样化的训练数据。这不仅可以提高模型的鲁棒性,还能改善其在真实世界应用中的表现。本文将介绍几种常用的音频数据增强技术,包括时间拉伸、音高变换、带通滤波、均衡器、冲激响应处理、归一化、填充、延迟处理和非线性模拟。
2025-01-09 21:08:15
1253
原创 语音增强的损失函数选择
最优尺度不变信噪比(OSI-SNR)是一种用于评估信号质量的指标,特别是在语音分离和增强任务中。OSI-SNR 通过优化估计信号与目标信号之间的相似性,提供了一种更稳定和可靠的信号质量度量。s表示原始语音信号,s表示重建的语音信号。
2024-12-23 23:20:28
1140
原创 论文解读 --Optimal scale-invariant signal-to-noise ratio and curriculum learning for monaural multi-spea
在日常聆听环境中,语音总是受到背景噪声、房间混响和干扰说话者的扭曲。随着深度学习方法的发展,单声道多说话者语音分离取得了许多进展。然而,这个领域的大多数研究都集中在实验室环境中的简单问题设置上,没有考虑背景噪声和房间混响。在本文中,我们开发了一个新的目标函数,名为。此外,我们提出了一种基于conv-TasNet的课程学习方法,以应对噪声和干扰说话者的显著影响。通过联合使用OSI-SNR和课程学习方法,我们的算法在分离基线上取得了显著的改进。
2024-12-23 20:41:55
724
原创 理想比值掩蔽(IRM)和理想幅度掩蔽(IAM)在语音分离中的应用
IRM和IAM都是有效的语音分离技术,它们各自有不同的优势和劣势。IRM在理论上具有优越性,因为它提供了连续的值范围,并且与维纳滤波器有直接的联系。然而,它在相位信息处理上存在不足。IAM则在处理语音和噪声叠加时更为灵活,但需要对输出值进行截断以避免训练过程中的问题。在实际应用中,选择哪种技术取决于具体的噪声条件和语音增强的目标。下面是使用 Python 实现理想比值掩蔽(IRM)和理想幅度掩蔽(IAM)计算的示例代码。"""计算短时傅里叶变换(STFT)""""""计算理想比值掩蔽(IRM)"""
2024-12-20 18:53:54
1124
原创 ICASSP AEC BASELINE代码解读
在这篇博客中,我们将深入探讨 ICASSP 2022 会议上提出的 AEC 基线模型的实现。该模型旨在通过深度学习技术改善音频信号的质量,特别是在回声消除和噪声抑制方面。
2024-12-20 15:25:13
906
原创 深度回声消除模型中,Mask 的设置
在深度学习的音频信号处理领域,回声消除是一个重要的研究方向。回声消除模型的性能在很大程度上依赖于输入信号的特性以及掩码(mask)的设计。本文将介绍深度回声消除模型中的各种信号、训练和推理过程中的信号与掩码的关系,以及引入额外掩码的好处。在深度回声消除模型中,主要涉及以下几种信号:麦克风信号 ():这是模型的输入信号,包含了目标语音、背景噪声和回声。麦克风信号是我们希望处理的主要信号。远端信号 ():这是来自远端的信号,通常是清晰的语音信号。远端信号用于生成回声,帮助模型学习如何去除回声成分。目标语音 ()
2024-12-18 11:49:28
1026
原创 深度学习模型中音频流式处理
在现代深度学习应用中,音频处理是一个重要的领域,尤其是在语音识别、音乐生成和音频分类等任务中。流式处理(Streaming Processing)是一种有效的处理方式,它允许模型逐帧处理音频数据,而不是一次性处理整个序列。这种方法在实时应用中尤为重要,因为它可以减少延迟并提高响应速度。流式处理的核心思想是将音频数据分成多个帧(frames),并逐帧输入模型进行处理。在训练阶段,模型可以接受多个帧作为输入,但在推理阶段,通常会逐帧输入数据。这种方法的优势在于:以下是一个基于 PyTorch 的简单示例,展示了
2024-12-11 15:45:19
756
原创 高效模拟小房间声学的镜像方法
讨论了一种基于近似镜像展开的小型房间模拟方法,适用于矩形非刚性墙封闭空间。该方法是简单、易于实现的,并且计算机模拟效率高。讨论了几个示例,其中其他方法将很困难。
2024-12-10 18:27:46
1075
论文翻译:A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech
2025-04-02
AEC论文解读 - MULTI-TASK DEEP RESIDUAL ECHO SUPPRESSION WITH ECHO-AWARE LOSS
2024-12-09
AEC论文解读 - A Deep Hierarchical Fusion Network for Fullband Acoustic Echo Cancellation
2024-12-09
AEC论文解读 - MULTI-SCALE TEMPORAL FREQUENCY CONVOLUTIONAL NETWORK WITH AXIAL ATTENTION FOR SPEECH ENHA
2024-12-09
AEC论文解读 - RESIDUAL ACOUSTIC ECHO SUPPRESSION BASED ON EFFICIENT MULTI-TASK CONVOLUTIONAL NEURAL NET
2024-12-06
AEC论文解读 - ACOUSTIC ECHO CANCELLATION WITH THE DUAL-SIGNAL TRANSFORMATION LSTM NETWORK
2024-12-04
AEC论文解读 - Deep Learning for Acoustic Echo Cancellation in Noisy and Double-Talk Scenarios
2024-12-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人