不同音频振幅dBFS计算方法

1. 振幅的基本概念

振幅是描述音频信号强度的一个重要参数。它通常表示为信号的幅度值,幅度越大,声音听起来就越响。为了更好地理解和处理音频信号,通常会将振幅转换为分贝(dB)单位。分贝是一个对数单位,能够更好地反映人耳对声音强度变化的感知。

人耳对声音的感知是非线性的,通常对响度变化的感知与实际的物理振幅变化不成正比。使用 RMS 和分贝单位进行计算,可以更好地模拟人耳的感知特性。以下是不同计算方法与听觉结果的一致性分析:

  • 总 RMS:提供了整体响度的良好估计,通常与听觉感知一致。
  • 最大 RMS:能够捕捉到音频信号中的最强响度部分,适合用于动态范围分析。
  • 最小 RMS:有助于识别音频信号中的弱响度部分,适合用于音频修复和增强。
  • 平均 RMS:提供了稳定的响度水平,适合用于音频混音和母带处理。
  • 峰值幅度:虽然能够快速反映瞬时响度,但由于其瞬时特性,可能与人耳的感知不完全一致。

2. 振幅计算方法

2.1 总 RMS(Total RMS)

总 RMS 是一种常用的振幅计算方法,表示整个音频信号的平均能量。其计算公式为:
RMS = 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i 2 + 1.0 × 1 0 − 9 ) \text{RMS} = 20 \cdot \log_{10}(\sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} + 1.0 \times 10^{-9}) RMS=20log10(N1i=1Nxi2 +1.0×109)

其中, x i x_i xi是音频信号的样本值, N N N 是样本总数。总 RMS 提供了音频信号的整体响度感知。

2.2 最大 RMS(Max RMS)

最大 RMS 是通过将音频信号分成多个窗口,计算每个窗口的 RMS 值,并返回这些值中的最大值。其计算公式为:
Max RMS = max ⁡ ( 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i 2 + 1.0 × 1 0 − 9 ) ) \text{Max RMS} = \max \left( 20 \cdot \log_{10} \left( \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} + 1.0 \times 10^{-9} \right) \right) Max RMS=max 20log10 N1i=1Nxi2 +1.0×109

其中:

  • x i x_i xi 是窗口内的音频样本值。
  • N N N是窗口内样本的总数。

2.3 最小 RMS(Min RMS)

最小 RMS 与最大 RMS 类似,但它返回的是每个窗口中计算出的最小 RMS 值。其计算公式为:
Min RMS = min ⁡ ( 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i 2 + 1.0 × 1 0 − 9 ) ) \text{Min RMS} = \min \left( 20 \cdot \log_{10} \left( \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} + 1.0 \times 10^{-9} \right) \right) Min RMS=min 20log10 N1i=1Nxi2 +1.0×109

其中:

  • x i x_i xi 是窗口内的音频样本值。
  • N N N 是窗口内样本的总数。

2.4 平均 RMS(Avg RMS)

平均 RMS 是所有窗口 RMS 值的平均值,提供了音频信号的整体响度水平。其计算公式为:
Avg RMS = 1 M ∑ j = 1 M ( 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i j 2 + 1.0 × 1 0 − 9 ) ) \text{Avg RMS} = \frac{1}{M} \sum_{j=1}^{M} \left( 20 \cdot \log_{10} \left( \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_{ij}^2} + 1.0 \times 10^{-9} \right) \right) Avg RMS=M1j=1M 20log10 N1i=1Nxij2 +1.0×109

其中:

  • x i j x_{ij} xij 是第 j j j 个窗口内的音频样本值。
  • N N N 是每个窗口内样本的总数。
  • M M M 是窗口的总数。

2.5 峰值幅度(Peak Amplitude)

峰值幅度是音频信号中最大绝对值的幅度,通常用于表示信号的瞬时强度。其计算公式为:
Peak = 20 ⋅ log ⁡ 10 ( max ⁡ ( ∣ x ∣ ) + 1.0 × 1 0 − 9 ) \text{Peak} = 20 \cdot \log_{10}(\max(|x|) + 1.0 \times 10^{-9}) Peak=20log10(max(x)+1.0×109)

峰值幅度能够快速反映音频信号的瞬时响度,但不一定能准确表示人耳的感知。

3. 程序实现

该程序实现了音频分析与音量调整功能,能够计算音频文件的总、最大、最小、平均 RMS 和峰值幅度,并根据用户指定的不同类型目标 dBFS 值自动调整音频的音量。

import os
import numpy as np
import librosa
import soundfile as sf


def calculate_total_rms_dbfs(audio_data):
    rms_level = 20 * np.log10(np.sqrt(np.mean(audio_data ** 2)) + 1.0e-9)  # 计算总 RMS 并转换为 dBFS
    return rms_level


def calculate_max_rms_dbfs(audio_data, window_size):
    rms_values = []
    for start in range(0, len(audio_data), window_size):
        end = min(start + window_size, len(audio_data))
        window = audio_data[start:end]
        if len(window) > 0:
            rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
            rms_values.append(rms)
    return np.max(rms_values) if rms_values else -np.inf  # 返回 -inf 如果没有 RMS 值


def calculate_min_rms_dbfs(audio_data, window_size):
    rms_values = []
    for start in range(0, len(audio_data), window_size):
        end = min(start + window_size, len(audio_data))
        window = audio_data[start:end]
        if len(window) > 0:
            rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
            rms_values.append(rms)
    return np.min(rms_values) if rms_values else -np.inf  # 返回 -inf 如果没有 RMS 值


def calculate_avg_rms_dbfs(audio_data, window_size):
    rms_values = []
    for start in range(0, len(audio_data), window_size):
        end = min(start + window_size, len(audio_data))
        window = audio_data[start:end]
        if len(window) > 0:
            rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
            rms_values.append(rms)
    return np.mean(rms_values) if rms_values else -np.inf  # 返回 -inf 如果没有 RMS 值


def calculate_peak_amplitude(audio_data):
    return 20 * np.log10(np.max(np.abs(audio_data)) + 1.0e-9)


def adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs):
    """调整音频的音量到目标 RMS 值"""
    current_rms = 10 ** (current_rms_dbfs / 20)  # 将 dBFS 转换为线性幅度
    target_rms = 10 ** (target_rms_dbfs / 20)  # 将目标 dBFS 转换为线性幅度

    # 计算调整因子
    adjustment_factor = target_rms / current_rms if current_rms > 0 else 1.0
    adjusted_audio = audio_data * adjustment_factor

    return adjusted_audio


def adjust_volume_to_total_rms(audio_data, target_rms_dbfs):
    current_rms_dbfs = calculate_total_rms_dbfs(audio_data)
    return adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs)


def adjust_volume_to_max_rms(audio_data, window_size, target_rms_dbfs):
    current_rms_dbfs = calculate_max_rms_dbfs(audio_data, window_size)
    return adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs)


def adjust_volume_to_min_rms(audio_data, window_size, target_rms_dbfs):
    current_rms_dbfs = calculate_min_rms_dbfs(audio_data, window_size)
    return adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs)


def adjust_volume_to_avg_rms(audio_data, window_size, target_rms_dbfs):
    current_rms_dbfs = calculate_avg_rms_dbfs(audio_data, window_size)
    return adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs)


def adjust_volume_to_peak_amplitude(audio_data, target_rms_dbfs):
    current_rms_dbfs = calculate_peak_amplitude(audio_data)
    return adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs)


def analyze_audio_file(audio_path, target_rms_dbfs, window_duration=0.05):
    audio_data, sr = librosa.load(audio_path, sr=None)
    window_size = int(window_duration * sr)

    total_rms_dbfs = calculate_total_rms_dbfs(audio_data)
    max_rms_dbfs = calculate_max_rms_dbfs(audio_data, window_size)
    min_rms_dbfs = calculate_min_rms_dbfs(audio_data, window_size)
    avg_rms_dbfs = calculate_avg_rms_dbfs(audio_data, window_size)
    peak_amplitude = calculate_peak_amplitude(audio_data)

    print(f"File: {audio_path}")
    print(f"Total RMS (dBFS): {total_rms_dbfs:.2f}")
    print(f"Max RMS (dBFS): {max_rms_dbfs:.2f}")
    print(f"Min RMS (dBFS): {min_rms_dbfs:.2f}")
    print(f"Avg RMS (dBFS): {avg_rms_dbfs:.2f}")
    print(f"Peak Amplitude (dBFS): {peak_amplitude:.2f}")

    # 调整音频到目标 RMS
    adjusted_audio_total = adjust_volume_to_total_rms(audio_data, target_rms_dbfs)
    adjusted_audio_max = adjust_volume_to_max_rms(audio_data, window_size, target_rms_dbfs)
    adjusted_audio_min = adjust_volume_to_min_rms(audio_data, window_size, target_rms_dbfs)
    adjusted_audio_avg = adjust_volume_to_avg_rms(audio_data, window_size, target_rms_dbfs)
    adjusted_audio_peak = adjust_volume_to_peak_amplitude(audio_data, target_rms_dbfs)

    # 保存调整后的音频
    sf.write(os.path.splitext(audio_path)[0] + '_adjusted_total.wav', adjusted_audio_total, sr)
    sf.write(os.path.splitext(audio_path)[0] + '_adjusted_max.wav', adjusted_audio_max, sr)
    sf.write(os.path.splitext(audio_path)[0] + '_adjusted_min.wav', adjusted_audio_min, sr)
    sf.write(os.path.splitext(audio_path)[0] + '_adjusted_avg.wav', adjusted_audio_avg, sr)
    sf.write(os.path.splitext(audio_path)[0] + '_adjusted_peak.wav', adjusted_audio_peak, sr)

    print(f"Adjusted audio files saved with target RMS: {target_rms_dbfs} dBFS")


if __name__ == "__main__":
    audio_path = './test_volume.wav'
    target_rms_dbfs = -20  # 目标 RMS 值 (dBFS)
    analyze_audio_file(audio_path, target_rms_dbfs)

在这里插入图片描述

在这里插入图片描述计算结果与Audition一致。

4. 基于策略模式的代码重构

import numpy as np
import librosa
import soundfile as sf


# 策略接口
class AudioProcessingStrategy:
    def calculate_rms(self, audio_data, window_size=None):
        pass

    def adjust_volume(self, audio_data, target_rms_dbfs, window_size=None):
        current_rms_dbfs = self.calculate_rms(audio_data, window_size)
        return self._adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs, window_size)

    @staticmethod
    def _adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs, window_size=None):
        current_rms = 10 ** (current_rms_dbfs / 20)
        target_rms = 10 ** (target_rms_dbfs / 20)
        adjustment_factor = target_rms / current_rms if current_rms > 0 else 1.0
        return audio_data * adjustment_factor


# 具体策略:总 RMS
class TotalRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        return 20 * np.log10(np.sqrt(np.mean(audio_data ** 2)) + 1.0e-9)


# 具体策略:最大 RMS
class MaxRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        rms_values = []
        for start in range(0, len(audio_data), window_size):
            end = min(start + window_size, len(audio_data))
            window = audio_data[start:end]
            if len(window) > 0:
                rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
                rms_values.append(rms)
        return np.max(rms_values) if rms_values else -np.inf


# 具体策略:最小 RMS
class MinRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        rms_values = []
        for start in range(0, len(audio_data), window_size):
            end = min(start + window_size, len(audio_data))
            window = audio_data[start:end]
            if len(window) > 0:
                rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
                rms_values.append(rms)
        return np.min(rms_values) if rms_values else -np.inf


# 具体策略:平均 RMS
class AvgRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        rms_values = []
        for start in range(0, len(audio_data), window_size):
            end = min(start + window_size, len(audio_data))
            window = audio_data[start:end]
            if len(window) > 0:
                rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
                rms_values.append(rms)
        return np.mean(rms_values) if rms_values else -np.inf


# 具体策略:峰值幅度
class PeakAmplitudeStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        return 20 * np.log10(np.max(np.abs(audio_data)) + 1.0e-9)


# 上下文
# 上下文
class AudioProcessor:
    def __init__(self, strategy: AudioProcessingStrategy):
        self.strategy = strategy

    def set_strategy(self, strategy: AudioProcessingStrategy):
        self.strategy = strategy
        return self  # 返回自身以支持链式调用

    def calculate_rms(self, audio_data, window_size=None):
        return self.strategy.calculate_rms(audio_data, window_size)

    def adjust_volume(self, audio_data, target_rms_dbfs, window_size=None):
        return self.strategy.adjust_volume(audio_data, target_rms_dbfs, window_size)


if __name__ == "__main__":
    audio_path = './test_volume.wav'
    audio_data, sr = librosa.load(audio_path, sr=None)

    # 创建上下文并设置策略
    audio_processor = AudioProcessor(TotalRMSStrategy())

    # 计算总 RMS 并调整音量
    adjusted_audio_total = audio_processor.set_strategy(TotalRMSStrategy()).adjust_volume(audio_data, -20)
    total_rms = audio_processor.strategy.calculate_rms(audio_data)
    print(f"Total RMS (dBFS): {total_rms:.2f}")
    sf.write('./adjusted_audio_total.wav', adjusted_audio_total, sr)

    # 计算最大 RMS 并调整音量
    adjusted_audio_max = audio_processor.set_strategy(MaxRMSStrategy()).adjust_volume(audio_data, -20, window_size=1024)
    max_rms = audio_processor.strategy.calculate_rms(audio_data, window_size=1024)
    print(f"Max RMS (dBFS): {max_rms:.2f}")
    sf.write('./adjusted_audio_max.wav', adjusted_audio_max, sr)

    # 计算最小 RMS 并调整音量
    adjusted_audio_min = audio_processor.set_strategy(MinRMSStrategy()).adjust_volume(audio_data, -20, window_size=1024)
    min_rms = audio_processor.strategy.calculate_rms(audio_data, window_size=1024)
    print(f"Min RMS (dBFS): {min_rms:.2f}")
    sf.write('./adjusted_audio_min.wav', adjusted_audio_min, sr)

    # 计算平均 RMS 并调整音量
    adjusted_audio_avg = audio_processor.set_strategy(AvgRMSStrategy()).adjust_volume(audio_data, -20, window_size=1024)
    avg_rms = audio_processor.strategy.calculate_rms(audio_data, window_size=1024)
    print(f"Avg RMS (dBFS): {avg_rms:.2f}")
    sf.write('./adjusted_audio_avg.wav', adjusted_audio_avg, sr)

    # 计算峰值幅度并调整音量
    adjusted_audio_peak = audio_processor.set_strategy(PeakAmplitudeStrategy()).adjust_volume(audio_data, -20)
    peak_amplitude = audio_processor.strategy.calculate_rms(audio_data)
    print(f"Peak Amplitude (dBFS): {peak_amplitude:.2f}")
    sf.write('./adjusted_audio_peak.wav', adjusted_audio_peak, sr)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值