cv
文章平均质量分 81
李月光98
这个作者很懒,什么都没留下…
展开
-
OCRNet 论文解读
论文:Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation文章提出一种新的目标上下文特征表示方法,方法本质上是用注意力建立点和对象区域的上下文关系。背景和动机获取目标的上下文特征有两种主流方法,一是以ASPP为代表的多尺度模块,ASPP通过对特征图中的点进行稀疏采样获得上下文,这种方式获得上下文既包含前景目标,也可能包含背景。另一种被称为 Relational context,这种方式原创 2021-11-23 11:03:41 · 3503 阅读 · 0 评论 -
2021 美图CV算法一面面经
记录下来,主要是给自己查漏补缺,也给大家一个面试的借鉴。面试时长90分钟,面试60min+算法题和反问30min,面试官很nice,在面试过程中能感受到他的技术深度和见识广度。实习相关我实习主要做的是机器学习方面,问了我如何设计特征,如何判断特征的好坏等等(不过这些本来就是简历里的东西)论文相关(我是菜鸡~,没有项目)流程大致是:整体介绍,(这个论文是做什么样的任务,达到怎么样的效果)网络设计,(网络如何设计的),面试官是完全明白了我的网络,问我有没有了解过显著性检测里的F3Net,说原创 2021-11-18 11:04:21 · 1635 阅读 · 0 评论 -
检测中的不平衡问题及解决办法
类间不平衡(class imbalance) 尺度不平衡(scale imbalance) 空间不平衡(spatial imbalance) 多任务不平衡(objective imbalance) 背景-前景不平衡 前景-前景不平衡 目标尺寸不平衡 特征尺度不平衡 定义类间不平衡: 属于不同类别的样本数量差异显著。前景-背景不平衡:正负例样本数量差异显著,比如rpn提出的候选框负例远大于正例。 前景-前景不平衡:检测的目标其出现频率在数.原创 2021-10-04 10:19:09 · 1268 阅读 · 0 评论 -
关于 Faster RCNN正负样本选取的问题
回顾fast rcnn样本选取问题原创 2021-10-02 21:58:28 · 5956 阅读 · 0 评论