关于 Faster RCNN正负样本选取的问题

faster rcnn的解读这两篇文章写的很好,很清楚。面试时被问了这个问题,专门记录下来。

  1. 一文读懂Faster RCNN
  2. 从编程实现角度学习Faster R-CNN(附极简实现)

回顾fast rcnn样本选取问题

fast rcnn 框架
在faster rcnn 中,首先通过selective search 产生了2000个候选框,在进行一个批次训练的时候选择R_sel个框进行训练(文中batch size=128),一个mini-batch中正负样本的比例按照1:3选取,且与groundtruth的IoU>=0.5的为正样本,0.1<IoU<0.5的为负样本。
P.S. 这里设置为0.1的原因是,作者认为与groundtruth有一定交叠的背景更可能是比较困难的负样本,这样选择负样本有助于收敛和提高准确性,但不难发现,这种选取方法忽略了一些重要的及困难的背景区域。

faster rcnn的正负样本选取问题

faster rcnn相比fast rcnn,主要贡献之处在于提出了RPN(区域建议网络,Region Proposal Networks)

### Faster R-CNN 的改进方法和优化技巧 #### 1. 锚框(Anchor Boxes)的优化 引入锚框并通过聚类方式来替代手工选取先验框,可以提高模型对不同尺度和比例的目标检测效果[^1]。具体来说,可以通过K-means等聚类算法分析数据集中物体尺寸分布情况,以此为基础设计一组最优的基础锚框。 #### 2. 提升区域建议网络 (Region Proposal Network, RPN) 为了进一步提升RPN的表现力,在训练过程中可采取如下措施: - 使用更深更强壮的基础骨干网如ResNet101作为特征提取器; - 对于由基础网络产生的多级特征图应用FPN(Feature Pyramid Networks),增强跨尺度目标捕捉能力; - 微调RPN独有层的学习速率并冻结与其他模块共享的部分权重更新操作以稳定收敛过程[^3]; ```python import torch.nn as nn class ImprovedRPN(nn.Module): def __init__(self, backbone='resnet101', pretrained=True): super(ImprovedRPN, self).__init__() # 加载预训练的backbone网络 if backbone == 'resnet101': from torchvision.models import resnet101 base_model = resnet101(pretrained=pretrained) # 定义其他必要的组件... ``` #### 3. 增强分类子网络与回归子网络之间的协作 通过调整损失函数的设计以及正负样本采样策略等方式促进两个分支间的协同工作,进而改善整体定位精度与类别预测准确性。例如采用IoU-balanced sampling scheme或focal loss机制解决极端不平衡问题[^4]。 #### 4. 利用混合精度训练加速计算流程 借助半精度浮点数(FP16)运算可以在不牺牲太多数值稳定性的情况下大幅减少内存占用量及缩短迭代周期时间长度,这对于大规模分布式环境下的高效开发至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值