faster rcnn的解读这两篇文章写的很好,很清楚。面试时被问了这个问题,专门记录下来。
回顾fast rcnn样本选取问题
在faster rcnn 中,首先通过selective search 产生了2000个候选框,在进行一个批次训练的时候选择R_sel个框进行训练(文中batch size=128),一个mini-batch中正负样本的比例按照1:3选取,且与groundtruth的IoU>=0.5的为正样本,0.1<IoU<0.5的为负样本。
P.S. 这里设置为0.1的原因是,作者认为与groundtruth有一定交叠的背景更可能是比较困难的负样本,这样选择负样本有助于收敛和提高准确性,但不难发现,这种选取方法忽略了一些重要的及困难的背景区域。
faster rcnn的正负样本选取问题
faster rcnn相比fast rcnn,主要贡献之处在于提出了RPN(区域建议网络,Region Proposal Networks)