关于 Faster RCNN正负样本选取的问题

faster rcnn的解读这两篇文章写的很好,很清楚。面试时被问了这个问题,专门记录下来。

  1. 一文读懂Faster RCNN
  2. 从编程实现角度学习Faster R-CNN(附极简实现)

回顾fast rcnn样本选取问题

fast rcnn 框架
在faster rcnn 中,首先通过selective search 产生了2000个候选框,在进行一个批次训练的时候选择R_sel个框进行训练(文中batch size=128),一个mini-batch中正负样本的比例按照1:3选取,且与groundtruth的IoU>=0.5的为正样本,0.1<IoU<0.5的为负样本。
P.S. 这里设置为0.1的原因是,作者认为与groundtruth有一定交叠的背景更可能是比较困难的负样本,这样选择负样本有助于收敛和提高准确性,但不难发现,这种选取方法忽略了一些重要的及困难的背景区域。

faster rcnn的正负样本选取问题

faster rcnn相比fast rcnn,主要贡献之处在于提出了RPN(区域建议网络,Region Proposal Networks)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值