【POJ 1144】Network 题解(Tarjan算法+无向图+求割点+链式前向星)

一家电话线公司(TLC)正在建立一个新的电话电缆网络。它们连接由1到N的整数编号的几个位置。没有两个地方的数字相同。这些线路是双向的,总是连接在两个地方,在每一个地方,线路都以电话交换机结束。每个地方都有一个电话交换机。从每个地方可以通过其他地方的线路到达,但不需要直接连接,可以通过几个交换。有时,某个地方的电源出现故障,然后交换机无法运行。TLC的官员意识到,在这种情况下,除了故障地点无法到达之外,还可能导致其他一些地方无法相互连接。在这种情况下,我们将说出失败的地点发生)是关键的。现在,官员们正试图编写一个程序,找出所有这些关键地点的数量。帮助他们。

输入

输入文件由若干行组成。每个块描述一个网络。在每个区块的第一行中,有N<100的位置。接下来最多N行中的每一行都包含一个位置的编号,后面跟着一些位置的编号。这些最多N条线完全描述了网络,即网络中两个位置的每个直接连接至少包含在一行中。一行中的所有数字都是分开的一个空格。每个块以仅包含0的行结束。最后一个块只有一条N=0的线;

输出

输出包含输入文件中除最后一个块外的每个块的一行,其中包含关键位置的数量。

示例

输入:

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

输出:

1
2

提示

您需要确定一行的结尾。为了便于确定,在每行结尾之前没有多余的空格。


思路

割点是指如果从图中移除该点及其相连的边,会使得原本连通的图变为非连通,即该点在图中起到了"连接"的作用。用Tarjan算法求无向图的割点的个数。

使用了边表数组edge来存储图的边信息,其中每个元素包括目标节点to和下一条边的索引next。head数组用于存储每个节点的第一条边的索引。dfn和low数组用于Tarjan算法中存储每个节点的时间戳和追溯点。bitset cut是一个位集合,用于标记每个节点是否为割点。

Tarjan算法:对图中的每个节点,首先初始化它的时间戳dfn和追溯点low。然后遍历它的所有邻接节点,如果邻接节点未被访问过,就递归调用Tarjan算法处理邻接节点,并在返回时更新当前节点的追溯点low。如果邻接节点已被访问过,就直接更新当前节点的追溯点low。如果u是割点,首先子节点v的追溯点要大于u的时间戳,如果u是根节点,还要满足该条件的子节点多于两个。


AC代码

#include <iostream>
#include <cstring>
#include <sstream>
#include <algorithm>
#include <bitset>
#define AUTHOR "HEX9CF"
using namespace std;

const int maxn = 100005;

struct snode
{
    int to;
    int next;
} edge[maxn];
int head[maxn];
int cnt = 0;

int num = 0;
bitset<maxn> cut;

//tarjan
int dfn[maxn];// 时间戳
int low[maxn];// 追溯点

void init(){
    num = 0;
    cut.reset();
    memset(head, -1, sizeof(head));
    memset(dfn, 0, sizeof(dfn));
    memset(low, 0, sizeof(low));
}

void add(int u, int v)
{
    edge[cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}

void print(int n)
{
    for (int j = 1; j <= n; j++)
    {
        cout << j << "-";
        for (int i = head[j]; ~i; i = edge[i].next)
        {
            cout << edge[i].to;
        }
        cout << endl;
    }
}

// 求割点
void tarjan(int u, int root)
{
    dfn[u] = low[u] = ++num; // 初始化节点
    int son = 0;
    for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;// 访问子节点
        if(!dfn[v]){
            tarjan(v, u);
            low[u] = min(low[u], low[v]);// 返回时更新
            if(low[v] >= dfn[u]){
                son++;
                if(u != root || son > 1){// u不是根节点或有两个以上子节点满足条件
                    cut[u] = 1;
                }
            }
        }else{
            low[u] = min(low[u], dfn[v]);// 更新追溯点
        }
    // cout << u << " " <<  low[u] << endl;
    }
}

int main()
{
    int n;
    int u, v;
    string str;
    stringstream ss;
    while (1)
    {
        cin >> n;
        getchar();
        if (!n)
        {
            break; 
        }
        init();
        // 导入节点
        while (1)
        {
            ss.clear();
            getline(cin, str);
            ss << str;
            ss >> u;
            if (!u)
            {
                break;
            }
            while (ss >> v)
            {
                add(u, v);
                add(v, u);
            }
        }
        // print(n);
        for(int i = 1; i <= n; i++){
            if(!dfn[i]){
                tarjan(i, i);
            }
        }
        cout << cut.count() << endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k, a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值