许多学校都与计算机网络相连。这些学校之间已经达成了协议:每所学校都有一份分发软件的学校名单(“接收学校”)。注意,如果B在学校A的分发列表中,那么A不一定出现在学校B的列表中
您需要编写一个程序,计算必须接收新软件副本的学校的最小数量,以便软件根据协议(子任务a)到达网络中的所有学校。作为进一步的任务,我们希望确保通过向任意学校发送新软件的副本,该软件将到达网络中的所有学校。为了实现这一目标,我们可能必须扩大新成员的接收者名单。计算必须进行的扩展的最小数量,以便无论我们向哪个学校发送新软件,它都能到达所有其他学校(子任务B)。一次延期意味着在一所学校的接收名单中引入一名新成员。
输入
第一行包含整数N:网络中的学校数量(2<=N<=100)。学校由前N个正整数标识。接下来的N行中的每一行描述了一个接收器列表。行i+1包含学校i的接收者的标识符。每个列表以0结尾。空列表行中仅包含一个0。
输出
您的程序应该向标准输出写入两行。第一行应该包含一个正整数:子任务A的解。第二行应该包含子任务B的解。
Sample
Input
5
2 4 3 0
4 5 0
0
0
1 0
Output
1
2
思路
用Tarjan算法求强连通分量,记录每个点所属的强连通分量序号。遍历每个点的邻接点,若该点与其邻接点所属的强连通分量序号不同,则将该点所属的强连通分量的出度加一,将其邻接点所属的强连通分量的入度加一。若图中只有一个强连通分量,则只要将软件发给任一学校,就能让软件到达所有学校,不需要添加接收名单;若图中不止一个强连通分量,则统计入度为0的强连通分量的个数zeroIn和出度为0的强连通分量的个数zeroOut。至少需要发送zeroIn次才能覆盖到所有学校,至少需要添加的接收名单数取zeroIn和zeroOut两者较大值。
AC代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <stack>
#define AUTHOR "HEX9CF"
using namespace std;
const int maxn = 100005;
struct Snode
{
int to;
int next;
} edge[maxn];
int head[maxn];
int cnt = 0;
// tarjan
int num = 0;
int dfn[maxn], low[maxn];
bool vis[maxn];
stack<int> s;
int scc = 0;
int belong[maxn], inDeg[maxn], outDeg[maxn];
int zeroIn = 0;
int zeroOut = 0;
void add(int u, int v)
{
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void print(int x)
{
for (int j = 1; j <= x; j++)
{
cout << j << "-";
for (int i = head[j]; ~i; i = edge[i].next)
{
cout << edge[i].to;
}
cout << endl;
}
}
void tarjan(int u)
{
dfn[u] = low[u] = ++num;
vis[u] = true;
s.push(u);
for (int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if (!dfn[v])
{
tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (vis[v])
{
low[u] = min(low[u], dfn[v]);
}
}
// SCC
if (low[u] == dfn[u])
{
int v;
do
{
v = s.top();
s.pop();
belong[v] = scc;
vis[v] = false;
// cout << v;
} while (v != u);
// cout << endl;
scc++;
}
}
int main()
{
int n;
memset(head, -1, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(inDeg, 0, sizeof(inDeg));
memset(outDeg, 0, sizeof(outDeg));
cin >> n;
for (int i = 1; i <= n; i++)
{
int in;
while (cin >> in)
{
if (!in)
{
break;
}
add(i, in);
}
}
// print(n);
for (int i = 1; i <= n; i++)
{
if (!dfn[i])
{
tarjan(i);
}
}
for (int u = 1; u <= n; u++)
{
for (int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if (belong[u] != belong[v])
{
outDeg[belong[u]]++;
inDeg[belong[v]]++;
}
}
}
if (scc == 1)
{
cout << 1 << endl
<< 0 << endl;
}
else
{
for (int i = 0; i < scc; i++)
{
if (!inDeg[i])
{
zeroIn++;
}
if (!outDeg[i])
{
zeroOut++;
}
}
cout << zeroIn << endl
<< max(zeroIn, zeroOut) << endl;
}
return 0;
}