[NOIP2018 提高组] 铺设道路
题目背景
NOIP2018 提高组 D1T1
题目描述
春春是一名道路工程师,负责铺设一条长度为 n n n 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 n n n 块首尾相连的区域,一开始,第 i i i 块区域下陷的深度为 d i d_i di 。
春春每天可以选择一段连续区间 [ L , R ] [L,R] [L,R] ,填充这段区间中的每块区域,让其下陷深度减少 1 1 1。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 0 0 0 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 0 0 0 。
输入格式
输入文件包含两行,第一行包含一个整数 n n n,表示道路的长度。 第二行包含 n n n 个整数,相邻两数间用一个空格隔开,第 i i i 个整数为 d i d_i di 。
输出格式
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
样例 #1
样例输入 #1
6
4 3 2 5 3 5
样例输出 #1
9
提示
【样例解释】
一种可行的最佳方案是,依次选择:
[
1
,
6
]
[1,6]
[1,6]、
[
1
,
6
]
[1,6]
[1,6]、
[
1
,
2
]
[1,2]
[1,2]、
[
1
,
1
]
[1,1]
[1,1]、
[
4
,
6
]
[4,6]
[4,6]、
[
4
,
4
]
[4,4]
[4,4]、
[
4
,
4
]
[4,4]
[4,4]、
[
6
,
6
]
[6,6]
[6,6]、
[
6
,
6
]
[6,6]
[6,6]。
【数据规模与约定】
对于
30
%
30\%
30% 的数据,
1
≤
n
≤
10
1 ≤ n ≤ 10
1≤n≤10 ;
对于
70
%
70\%
70% 的数据,
1
≤
n
≤
1000
1 ≤ n ≤ 1000
1≤n≤1000 ;
对于
100
%
100\%
100% 的数据,
1
≤
n
≤
100000
,
0
≤
d
i
≤
10000
1 ≤ n ≤ 100000 , 0 ≤ d_i ≤ 10000
1≤n≤100000,0≤di≤10000 。
思路
用双指针法寻找求连续非零区间。首先通过循环确定左端点,取第一个非0位置为左端点,如果左端点到达数组结尾则结束最外层循环。然后用循环向右扩展区间,如果右端点到达结尾或取到0则结束区间。
将该区间的所有元素减去该区间的最小值 mini
,并将该最小值累加到 ans
。不断重复寻找区间并进行减去操作,直到整个数组中的元素全部变为0。
注意:数据量较大,需要使用快读。
AC代码
#include <iostream>
#include <climits>
#include <algorithm>
#define AUTHOR "HEX9CF"
using namespace std;
const int N = 1e6 + 7;
int n;
int d[N];
int ans;
void read(int &x)
{
char ch = getchar();
x = 0;
while (!('0' <= ch && ch <= '9'))
{
ch = getchar();
}
while (('0' <= ch && ch <= '9'))
{
x = x * 10 + ch - '0';
ch = getchar();
}
}
int main()
{
ans = 0;
read(n);
for (int i = 1; i <= n; i++)
{
read(d[i]);
}
int *l, *r;
for (l = d + 1; l <= d + n;)
{
while (l < d + n && !*l)
{
l++;
}
if (l == d + n && !*l)
{
// 已平整
break;
}
int mini = INT_MAX;
// 区间开始
for (r = l; r <= d + n;)
{
if (*r)
{
// 扩大范围
mini = min(mini, *r);
r++;
}
else
{
// 区间结束
break;
}
}
// cout << l - d << " " << r - d - 1 << " " << mini << endl;
for(int *p = l; p < r; p++) {
*p -= mini;
}
ans += mini;
}
printf("%d", ans);
return 0;
}