【洛谷 P3406】海底高铁 题解(差分+前缀和+贪心算法)

本文讨论了如何通过计算和策略选择,最小化在复杂铁路网络中使用纸质车票和IC卡的出行总费用,涉及算法与计算优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

海底高铁

题目描述

该铁路经过 N N N 个城市,每个城市都有一个站。不过,由于各个城市之间不能协调好,于是乘车每经过两个相邻的城市之间(方向不限),必须单独购买这一小段的车票。第 i i i 段铁路连接了城市 i i i 和城市 i + 1 ( 1 ≤ i < N ) i+1(1\leq i<N) i+1(1i<N)。如果搭乘的比较远,需要购买多张车票。第 i i i 段铁路购买纸质单程票需要 A i A_i Ai 博艾元。

虽然一些事情没有协调好,各段铁路公司也为了方便乘客,推出了 IC 卡。对于第 i i i 段铁路,需要花 C i C_i Ci 博艾元的工本费购买一张 IC 卡,然后乘坐这段铁路一次就只要扣 B i ( B i < A i ) B_i(B_i<A_i) Bi(Bi<Ai) 元。IC 卡可以提前购买,有钱就可以从网上买得到,而不需要亲自去对应的城市购买。工本费不能退,也不能购买车票。每张卡都可以充值任意数额。对于第 i i i 段铁路的 IC 卡,无法乘坐别的铁路的车。

Uim 现在需要出差,要去 M M M 个城市,从城市 P 1 P_1 P1 出发分别按照 P 1 , P 2 , P 3 , ⋯   , P M P_1,P_2,P_3,\cdots,P_M P1,P2,P3,,PM 的顺序访问各个城市,可能会多次访问一个城市,且相邻访问的城市位置不一定相邻,而且不会是同一个城市。

现在他希望知道,出差结束后,至少会花掉多少的钱,包括购买纸质车票、买卡和充值的总费用。

输入格式

第一行两个整数, N , M N,M N,M

接下来一行, M M M 个数字,表示 P i P_i Pi

接下来 N − 1 N-1 N1 行,表示第 i i i 段铁路的 A i , B i , C i A_i,B_i,C_i Ai,Bi,Ci

输出格式

一个整数,表示最少花费

样例 #1

样例输入 #1

9 10
3 1 4 1 5 9 2 6 5 3
200 100 50
300 299 100
500 200 500
345 234 123
100 50 100
600 100 1
450 400 80
2 1 10

样例输出 #1

6394

提示

2 2 2 3 3 3 以及 8 8 8 9 9 9 买票,其余买卡。

对于 30 % 30\% 30% 数据 M = 2 M=2 M=2

对于另外 30 % 30\% 30% 数据 N ≤ 1000 , M ≤ 1000 N\leq1000,M\leq1000 N1000M1000

对于 100 % 100\% 100% 的数据 M , N ≤ 1 0 5 , A i , B i , C i ≤ 1 0 5 M,N\leq 10^5,A_i,B_i,C_i\le10^5 M,N105Ai,Bi,Ci105


思路

首先,定义了一些常量和变量,包括铁路的最大长度 N,城市数量 n,出差城市数量 m,出差城市列表 p[],每段铁路的票价 a[],IC卡费用 b[],购卡费用 c[],差分数组 diff[],和通过每个城市的次数 pass[]

然后,从输入中读取 nm,以及出差城市列表 p[] 和每段铁路的票价 a[],IC卡费用 b[],购卡费用 c[]

接着,利用差分数组 diff[] 计算每个城市的出差次数。diff[u]++diff[v]-- 表示城市 u 到城市 v 的铁路经过次数增加一次。

然后,利用前缀和的思想,计算 pass[],即每条铁路的累积经过次数。

最后,对于每条铁路,比较买票和买卡的费用,选择较小的费用,累加到总费用 ans 中。


AC代码

#include <algorithm>
#include <cstring>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;
using ll = long long;

const int N = 1e6 + 7;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;

ll n, m;
ll p[N];
ll a[N], b[N], c[N];
ll diff[N];
ll pass[N];

int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);

	a[0] = b[0] = c[0] = 0;
	memset(diff, 0, sizeof(diff));

	cin >> n >> m;
	for (int i = 1; i <= m; i++) {
		cin >> p[i];
	}
	for (int i = 1; i <= n - 1; i++) {
		cin >> a[i] >> b[i] >> c[i];
	}

	for (int i = 2; i <= m; i++) {
		ll u = p[i - 1];
		ll v = p[i];
		if (u > v) {
			swap(u, v);
		}
		diff[u]++;
		diff[v]--;
	}
	pass[0] = 0;
	for (int i = 1; i <= n - 1; i++) {
		pass[i] = diff[i] + pass[i - 1];
	}
	ll ans = 0;
	for (int i = 1; i <= n; i++) {
		ll sa = a[i] * pass[i];
		ll sb = b[i] * pass[i] + c[i];
		ans += min(sa, sb);
	}
	cout << ans << "\n";
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值