二分求两个有序数组归并后第k小的数

如标题,比如两个数组

a=[1,2,3]

b=[4,5,6]

k=5 ,然后归并后就是[1,2,3,4,5,6] 第5小是5

显然按照归并排序的方式可以O(n)求,可是这样顺便把所有的k对应的答案都求出来了,浪费了时间,如何在O(logn)的复杂度求出?

首先我们令

x=在a数组取出的个数

y=在b数组取出的个数

总共取出了从小到大的k个,显然k=x+y

然后呢,我们令x为二分的值

我们先考虑一下x的范围(这个问题需要把范围设置好,否则会炸)

x显然最小是max(0,k-(b数组长度)) x显然最大是min(k,(a数组的长度))

既然是二分,那肯定要考虑判定条件了

if k-mid==(b数组的长度) 真的需要从b数组取这么多吗 那还是把mid增大把,把l=mid+1

if a[mid]<=b[k-mid+1] 貌似是符合从小到大的顺序的 记录答案 l=mid+1

否则  r=mid-1

然后,主要二分代码来了

while(l<=r){
        int mid=l+(r-l)/2;
        if(k-mid==n2||a[mid]<=b[k-mid+1]){
            ans=mid;
            l=mid+1;
        }else{
            r=mid-1;
        }
    }

最后ans代表从a数组取的个数

那么需要考虑一下最后答案输出啥了

如果ans=0,那么是从b数组取出k个 显然cout<<b[k]

如果ans=k,那么是从a数组取出k个 显然cout<<a[k]

其他情况,emmm 从a中取出ans个,那么就是从b中取出了k-ans个,由于两个数组前b个和前k-ans个前后顺序是不一样的,但是答案肯定是这两块最大的一个(记住,两个数组原来是有序的,所以是这样)

那么就cout<<max(a[ans],b[k-ans])

结束了,noip2019(貌似改名字了)加油!!!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
给定两个有序数组,假设数组 `nums1` 的长度为 `m`,数组 `nums2` 的长度为 `n`。为了方便起见,假设 `m ≤ n`。要解这两个有序数组的中位数或第 `k` 小的元素,可以采用以下两种方法。 ## 方法一:归并排序 这种方法的思路很简单,就是将两个有序数组归并成一个有序数组,然后再根据数组长度和 k 的值确定中位数或第 k 小的元素。具体步骤如下: 1. 定义两个指针 `p1` 和 `p2`,分别指向数组 `nums1` 和 `nums2` 的起始位置。 2. 定义一个新数组 `nums3`,用于存放归并后的有序数组。 3. 循环执行以下步骤,直到 `nums3` 中有 `k` 个元素: 1. 比较 `nums1[p1]` 和 `nums2[p2]` 的大小,将较小的元素加入 `nums3` 中。 2. 将指向较小元素的指针后移一位。 4. 如果 `m + n` 是奇数,则 `nums3[(m+n)/2]` 就是中位数;否则 `nums3[(m+n)/2-1]` 和 `nums3[(m+n)/2]` 的平均值就是中位数。如果要第 k 小的元素,则返回 `nums3[k-1]`。 时间复杂度为 $O(m+n)$。 ## 方法二:二分查找 这种方法的思路比较巧妙,其核心思想是在两个有序数组中找到第 k 小的元素,假设这个元素在数组 `nums1` 的位置是 `i`,在数组 `nums2` 的位置是 `j`。那么有以下两种情况: 1. 如果 `nums1[i] < nums2[j]`,则数组 `nums1[0...i]` 中的所有元素都是第 k 小的元素的候选元素,因为这些元素都小于 `nums2[j]`,而 `nums2[0...j]` 中的所有元素都不可能是第 k 小的元素,因为这些元素都小于 `nums1[i]`。 2. 如果 `nums1[i] >= nums2[j]`,则数组 `nums2[0...j]` 中的所有元素都是第 k 小的元素的候选元素,因为这些元素都小于 `nums1[i]`,而 `nums1[0...i]` 中的所有元素都不可能是第 k 小的元素,因为这些元素都小于 `nums2[j]`。 具体步骤如下: 1. 定义两个指针 `p1` 和 `p2`,分别指向数组 `nums1` 和 `nums2` 的起始位置。 2. 循环执行以下步骤,直到找到第 k 小的元素: 1. 如果 `p1 >= m`,说明数组 `nums1` 已经没有元素可以参与比较,直接返回 `nums2[p2+k-1]`。 2. 如果 `p2 >= n`,说明数组 `nums2` 已经没有元素可以参与比较,直接返回 `nums1[p1+k-1]`。 3. 如果 `k == 1`,直接返回 `min(nums1[p1], nums2[p2])`。 4. 比较 `nums1[p1+k/2-1]` 和 `nums2[p2+k/2-1]` 的大小,如果前者小于等于后者,则说明 `nums1[0...k/2-1]` 中的所有元素都小于等于第 k 小的元素,可以把这些元素全部排除掉,更新 `k` 的值为原来的一半,并将指向 `nums1` 的指针后移 `k/2` 个位置;否则说明 `nums2[0...k/2-1]` 中的所有元素都小于等于第 k 小的元素,可以把这些元素全部排除掉,更新 `k` 的值为原来的一半,并将指向 `nums2` 的指针后移 `k/2` 个位置。 3. 如果要中位数,则返回第 `(m+n)/2` 小的元素和第 `(m+n)/2+1` 小的元素的平均值;如果要第 k 小的元素,则返回第 k 小的元素。 时间复杂度为 $O(\log(m+n))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值