自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 深度学习(花书)--概率与信息论

深度学习(花书)–概率与信息论基本概念随机变量:可以随机地取不同值的变量。离散:拥有有限或者可数的无限状态连续:伴随着实数值概率分布:用来描述随机变量或一簇变量在每一个可能取值的状态的可能性的大小。概率质量函数(probability mass function, PMF)用来描述离散变量的概率分布概率质量函数用于多种随机变量,被称为联合概率分布(joint probability distribution)概率密度函数(probability density

2020-11-14 19:09:57 432

原创 深度学习(花书)--线代基础

线性代数基础基础概念**标量、向量、矩阵和张量标量(scalar):一个标量就是一个单独的数import numpy as npAscalar = np.array(1)* 向量(vector):一个向量表示一列数 Avector = np.array([1,2,3,4,5,6])* 矩阵(matrix):矩阵是一个二维数组,其中每一个元素被两个索引而非一个所确定。Amatrix = np.array([[1,2,3],[4,5,6],[7,8,9]])* 张量(te

2020-11-07 19:14:53 689

原创 数据预处理流程梳理(1)---单要素处理

天池大赛赛题解析--特征工程天池大赛赛题解析梳理数据预处理流程1.任务变量分析天池大赛赛题解析梳理数据预处理流程1.任务变量分析变量识别使用变量类型和数据类型两方面进行分析。变量从多个维度进行解析输入输出变量:输入(feature),输出(target)数据类型:字符、数值连续型、类别型对于数据类型的单要素变量可以采用如下方式进行初步解析变量分析单变量分析缺测值统计 import pandas as pd df.isnull().sum() 异常值

2020-11-03 21:43:29 325

原创 YOLO v1 计算流程--基于pytorch

YOLO v1 计算流程–基于pytorch个人理解TOLO v1的计算有如下几个关键部分:1.图像预处理YOLO v1要求图像的大小是一致的448 * 448 因此读取图像后需要对图像进行预处理2.图像的前向传播前向传播部分由两部分组成:特征提取和输出构建特征提取可以使用原文章中基于DartNet的特征提取方式,也可以采用其他网络诸如VGG或者ResNet等输出构建时YOLO v1的精华,是YOLO网络的主要思想核心,基于划分好的网格构建bounding box、confiden

2021-11-03 13:13:38 755

原创 注意力机制:pytorch实现

注意力机制:pytorch实现查询(queries),键(keys)和值(Values)查询、键和值是注意力机制的基本三个关键词,注意力评分函数则是注意力机制建立的主要方式,注意力机制就是以这三个关键词为基础通过注意力评分函数进行花式操作:加性注意力、乘积注意力、软硬注意力和多头注意力等查询(queries): 是自主性提示,告诉你应该关注什么键(keys): 为非自主提示,为所需的所有信息值(values): 使用queries对keys加权,最后得到的带注意力权重的信息注意力评分函数: 注

2021-10-19 17:04:45 8678 2

原创 跟李沐学AI—pytorch锚框代码解析——3

跟李沐学AI–锚框代码解析–3非极大值抑制预测边界框当存在许多锚框时,可能会输出许多相似的具有明显重带你的预测边界框,围绕同一目标,为了简化输出,使用给非极大值抑制(non-maximum suppression, NMS)合并对应目标为同一类的类似的预测边界框其工作原理如下:基础概念:对于一个预测边界框B,目标检测模型会计算每个类的预测概率,最大预测概率 ppp 所对应的类别,就是边框 BBB 的类别,这里 ppp 为 BBB的置信度,对于同一张图像,所有非背景预测边框按照置信都降序排序,生成

2021-10-12 17:52:41 841

原创 跟李沐学AI—pytorch锚框代码解析—2

跟李沐学AI–锚框代码解析–2锚框的实际应用在训练集中,每一个锚框为一个训练样本,为了训练目标检测模型,需要进行两步对应:基于IoU将边界框分配给最接近锚框锚框与类的对应关系锚框与位置的对应关系,计算偏移量offset将最接近的真实边界框分配给锚框若锚框为 A1,A2,A3,…,AnA_1,A_2,A_3,\dots,A_nA1​,A2​,A3​,…,An​,真实边框为B1,B2,B3,…,BmB_1,B_2,B_3,\dots,B_mB1​,B2​,B3​,…,Bm​,其中锚框数

2021-10-12 15:23:59 857

原创 跟李沐学AI—pytorch版本锚框代码解析—1

跟李沐学AI–锚框代码解析–1锚框的介绍目标检测算法通常会在输入图像中采样大量的区域,然后判断区域中是否包含感兴趣的目标,并调整区域边缘从而更准确的预测目标的真实边界框。**锚框:**就是以图片中的像素点为中心生成的多个大小和高宽比(aspect ratio)不同的边界框。锚框的生成锚框的生成具有很多方式,但是基础为以像素点为中心扩展,主要参数:边框大小:s,高宽比:r,其中边框大小 s 为站原始图像的比例设输入图像的高度为hhh,宽度为www,则生成锚框的宽度为:sr∗h/ws \sq

2021-10-11 16:04:54 1865 3

原创 讯飞人脸关键点检测大赛--打卡2--伪标签学习与蒸馏学习

本此打卡的主要内容包括:预训练模型加载与修改训练过程中的模型保存伪标签训练知识蒸馏预训练模型加载与修改预训练模型采用的为resnet18,基于torchvision的model中保存的模型加载参数,并将现有的参数固定,后接全连接层进行回归resnet18模型加载说明:固定参数的是用来提取图片的数据特征resnet18模型最后一层的全连接层输出为进入softmax层之前的out_features利用 model.parameters()的可迭代性的params.require.

2021-10-09 14:15:46 505

原创 讯飞人脸关键点检测大赛--打卡1

这段时间参加了Coggle 30 days of ML的打卡活动,报名了CV赛事,赛题地址为:https://challenge.xfyun.cn/topic/info?type=key-points-of-human-face&ch=dw-sq-1赛题概述:人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术,金融和安防是目前人脸识别应用最广泛的两个领域。人脸关键点是人脸识别中的关键技术。人脸关键点检测需要识别出人脸的指定位置坐标,例如眉毛、眼睛、鼻子、嘴巴和脸部轮廓等位置坐..

2021-09-30 09:42:18 154

原创 深度学习--基于队列的数据随机载入

起因:最近在处理数据,训练深度学习模型的时候,发现使用pytorch中的dataloader的时候会占用大量缓存,拖慢数据的处理速度,凑巧在学习 李沐老师的深度学习课程时,李沐老师给出了解决方案,解决方案如下:将数据保存硬盘上,每次读取两个batch,一个batch直接用于训练,一个batch备用,这样可以尽可能少的占用缓存,同时保证运行速度以下是我的解决方案,主要思想是基于队列先进先出的思想,首先使用python构建队列:class Queue: def __in..

2021-09-01 18:22:41 252

原创 pytorch知识之优化--学习率调节

学习率是神经网络优化是的重要超参数,在梯度下降法中,学习率α\alphaα非常关键,学习率过大会不收敛,学习率过小则收敛速度太慢,常用的学习率调整方法包括:学习率衰减、学习率预热、周期性学习率调整等,除此之外还有一些自适应学习率。在pytorch中提供了相关算法的实现函数,挑几个比较有代表性的介绍学习一下:学习率衰减等间隔调整学习率:torch.optim.lr_scheduler.StepLR( optimizer, step_size, gamma=0.1, last.

2021-08-28 13:42:34 587

原创 基于pytorch的sque2suqe with attention实现与介绍

基于pytorch的sque2suqe with attention实现与介绍上一篇文章《基于pytorch的ConvGRU神经网络的实现与介绍》https://blog.csdn.net/qq_34992900/article/details/119514362 提到了关于GRU和LSTM神经元输出的处理问题,只采用LSTM或者GRU的话仅仅提取最后一个输出就可以,但是这样可能会造成一些信息的丢失,sque2sque with attention可以对输出进行转化,通过利用注意力机制对gru或者LS

2021-08-15 17:34:20 397 1

原创 基于pytorch的ConvGRU神经网络的实现与介绍

ConvGRU神经网络的介绍1.卷积神经网络介绍卷积神经网络(convlutional neural network)是一种具有局部连接,权重共享等特性的深层前馈神经网络特点:局部连接:在卷积层中每一个神经元都只和前一层中的某个局部窗口内的神经元相连,构成一个局部神经网络权重共享参数的卷积核w(l)w^{(l)}w(l)对于第l层的所有神经元都是相同的汇聚优点:平移、缩放、旋转不变性组成:目前卷积神经网络一般由卷积层、汇聚层和全连接层交叉堆叠而成卷积层:

2021-08-08 14:30:53 11872

原创 transformer--编码部分

transformer–编码部分Positional Encoding位置嵌入:就是在输入中加入包含句子中特定位置信息的维向量位置嵌入的维度与输入时间序列的维度相同,为 [序列长度, 所处位置]。一般输入的为多时次的时间序列,维度为[ time_num, feature_num ]在论文中使用了sin和cos的线性变换来提供模型的位置信息:PE(pos,2i)=sin(pos/100002i/dmodel)PE(pos, 2i)=sin(pos/10000^{2i/d_{model}})

2021-04-19 14:12:06 703

原创 随机森林介绍及python实现

随机森林(Random forest, RF)是 Breiman 教授在 2001 年提出的集成学习方法,是一种统计学习理论。它是基于装袋法Bagging集成理论实现的,利用自助法 bootstrap抽样技术从原始数据集中有放回地抽取多个不同的训练数据集,再结合随机子空间方法对每个bootstrap 数据集进行决策树建模,组成随机森林。在模型预测时,将测试数据输入模型,对多棵决策树的输出类别进行投票得到最终的预测结果。决策树介绍决策树是一种经典的数据挖掘方法,以一种自动生成判断规则的方式进行建模。.

2021-04-10 21:02:05 1167 1

原创 Bi-LSTM(attention)代码解析——基于Pytorch

Bi-LSTM(attention)代码解析——基于Pytorch以下为基于双向LSTM的的attention代码,采用pytorch编辑,接下来结合pytorch的语法和Attention的原理,对attention的代码进行介绍和解析。import torchimport numpy as npimport torch.nn as nnimport torch.optim as optim

2021-04-05 16:20:39 12235 24

原创 XGBoost学习2:重要参数篇

上一篇博客中对XGboost算法的原理、python的简单实现和一些重要参数进行了简单的介绍。但是在算法的实际使用和测试中,出了算法本身外,还要建立良好的算法训练、测试流程,以测试不同的参数对于算法的实现效果的影响,这一篇blog的主要内容就是介绍XGboost的重要参数的调整以及相应的调整方式。XGboost中的参数主要分为三类:通用参数、集成参数和应用参数,具体的对应功能在上一节中均有介绍集成算法参数:弱分类器个数:集成算法是通过在数据上构建多个弱评估器,汇总所有弱评估器的建模..

2021-03-28 19:07:26 524

原创 XGBoost介绍及Python实现

XGBoost介绍及Python实现XGBoost介绍及Python实现XGBoost简单介绍XGBoost的python简单实现XGBoost介绍及Python实现XGBoost简单介绍XGBoost 算法是boost 集成算法中的一种,Boosting 算法的思想是将许多弱分类器集成在一起形成一个强分类器。XGBoost 是一种提升树模型,是将许多树模型集成在一起,形成强分类器。XGBoost 中使用的弱分类器为CART (classification and regression tree)

2021-03-20 15:23:21 4181

原创 集成学习(Ensemble method)

集成学习(Ensemble method)主要类型:majority VotingBaggingBoostingRandom forestStackingmajority Voting采用多个模型进行分类对分类结果进行集合,分为软投票和硬投票,对于分类问题:硬投票:选取多模型分类中,类别最多的为结果软投票:对多模型的的输出结果赋予不同的权值,可以人工设置也可以训练得到,最终给出一个结果bagging思路:对一个数据集进行n次采样进而训练n个分类器ypre=mode

2021-02-01 18:31:09 369 2

原创 PCA与LDA

PCA与LDAPCA:主成分分析法LDA:线性判别法PCA与LDA的原理PCA:找到一个方向,使得数据投影之后实现方差最大化计算步骤:对数据矩阵进行标准化求取协方差矩阵计算协方差矩阵特征值与特征向量由特征向量矩阵 乘 原始矩阵(标准化后)得到降维结果推导过程:按照PCA定理,设置投影方向为 u投影均值为: 1n∑nuxi\frac{1}{n} \sum^n ux_in1​∑nuxi​ 其中标准化后 x均值为0投影方差为: 1n∑n(uxi)2\frac{1}{

2021-01-20 21:30:09 155

原创 凸优化与支持向量机理解

凸优化问题对于AI任务的理解:AI问题由两个方面组成:模型和优化,通过程序实现,程序的实现又可以拆解为数据结构+算法凸优化是在机器学习和深度学习中常用的优化方法的理论基础优化问题分类优化问题可以从四个方面分类:是否为凸优化问题是否连续是否带条件是否平滑其中最重要的是问题是否为凸优化问题凸优化的重要概念convex set 凸集对于任意x, y ∈\in∈ C 且任意参数,α∈\alpha \inα∈[0, 1],有αx+(1−α)y∈C\alpha x+(1

2020-12-26 17:26:30 990

原创 MySQL用户权限

用户及权限创建用户CREATE USER ‘username’@‘host’ IDENTIFIED BY ‘password’;其中:username:你将创建的用户名host:指定该用户在哪个主机上可以登陆,如果是本地用户可用localhost,如果想让该用户可以从任意远程主机登陆,可以使用通配符 %password:该用户的登陆密码,密码可以为空,如果为空则该用户可以不需要密码登陆服务器CREATE USER 'dog'@'localhost' IDENTIFIED BY '12

2020-12-07 21:58:41 146

原创 MySQL表的创建、插入与更新

创建和操作表创建表使用交互式创建和管理表工具直接使用MySQL语句创建表创建基础CREAT TABEL 创建表新表名字在关键词 CREATE TABLE 之后给出表列的名字何定义用逗号隔开eg:CREATE TABLE IF NOT EXISTS vocstable( rowid INT(11) NOT AUTO_INCREMENT statio

2020-11-15 21:06:44 340

原创 MySQL过滤

MySQL过滤SQL中的查询语句主要依赖于select语句实现有如下例子检索单个列SELECT prod_name FROM products;一般情况下将SQL关键词大写,对所有列名,表名小写,使代码便于阅读和调试SQL 语句不区分大小写,但是表名、列名区分大小写SQL 语句中的空格都被忽略掉检索多个列也是使用SELECT语句,不同的列名用逗号隔开SELECT prod_name, prod_name, prod_price FROM products检索所有列

2020-11-03 21:57:38 209

原创 MySQL基本操作汇总

MySQL数据库基本操作介绍汇总!!! 参考学习哔哩哔哩MySQL教程,一天学会MySQL查询数据库服务器中的所有数据库show databases选中一个数据库进行操作use {database name}创建数据库creat database {database name}数据库中的表show tables如何创建数据表creat table {table name}(name VARCHAR(20),owner VARCHAR(20),

2020-11-03 21:47:32 197

原创 基于站点数据的图卷积神经网络的实现 pyotrch

基于站点数据的图卷积神经网络的实现 pyotrch问题描述数据的预处理问题描述基于简单数据的图卷积神经网络展示,假设有5个空间相关的点(nodes),每个点有一个特征(feature),通过图卷积利用5个点的数据对某一点数据进行订正。参考多篇博客和github代码基于python编译了图卷积神经网络,主要使用pytorch实现图卷积,具体是否正确还请各位大佬多多指教。数据的预处理数据预...

2020-03-14 15:50:38 311

原创 使用Python将txt文件转为nc文件

使用Python将txt文件转为nc文件这段时间要批量使用nc文件,这里提供一个我自己编写的txt转nc文件的程序首先载入所需库import netCDF4 as nc from netCDF4 import Datasetimport pandas as pdimport osfrom pandas import DataFrame as dfimport ...

2019-11-17 11:22:46 7621 7

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除