目标检测
文章平均质量分 90
orient2019
这个作者很懒,什么都没留下…
展开
-
YOLO v1 计算流程--基于pytorch
YOLO v1 计算流程–基于pytorch个人理解TOLO v1的计算有如下几个关键部分:1.图像预处理YOLO v1要求图像的大小是一致的448 * 448 因此读取图像后需要对图像进行预处理2.图像的前向传播前向传播部分由两部分组成:特征提取和输出构建特征提取可以使用原文章中基于DartNet的特征提取方式,也可以采用其他网络诸如VGG或者ResNet等输出构建时YOLO v1的精华,是YOLO网络的主要思想核心,基于划分好的网格构建bounding box、confiden原创 2021-11-03 13:13:38 · 686 阅读 · 0 评论 -
跟李沐学AI—pytorch锚框代码解析——3
跟李沐学AI–锚框代码解析–3非极大值抑制预测边界框当存在许多锚框时,可能会输出许多相似的具有明显重带你的预测边界框,围绕同一目标,为了简化输出,使用给非极大值抑制(non-maximum suppression, NMS)合并对应目标为同一类的类似的预测边界框其工作原理如下:基础概念:对于一个预测边界框B,目标检测模型会计算每个类的预测概率,最大预测概率 ppp 所对应的类别,就是边框 BBB 的类别,这里 ppp 为 BBB的置信度,对于同一张图像,所有非背景预测边框按照置信都降序排序,生成原创 2021-10-12 17:52:41 · 796 阅读 · 0 评论 -
跟李沐学AI—pytorch锚框代码解析—2
跟李沐学AI–锚框代码解析–2锚框的实际应用在训练集中,每一个锚框为一个训练样本,为了训练目标检测模型,需要进行两步对应:基于IoU将边界框分配给最接近锚框锚框与类的对应关系锚框与位置的对应关系,计算偏移量offset将最接近的真实边界框分配给锚框若锚框为 A1,A2,A3,…,AnA_1,A_2,A_3,\dots,A_nA1,A2,A3,…,An,真实边框为B1,B2,B3,…,BmB_1,B_2,B_3,\dots,B_mB1,B2,B3,…,Bm,其中锚框数原创 2021-10-12 15:23:59 · 769 阅读 · 0 评论 -
跟李沐学AI—pytorch版本锚框代码解析—1
跟李沐学AI–锚框代码解析–1锚框的介绍目标检测算法通常会在输入图像中采样大量的区域,然后判断区域中是否包含感兴趣的目标,并调整区域边缘从而更准确的预测目标的真实边界框。**锚框:**就是以图片中的像素点为中心生成的多个大小和高宽比(aspect ratio)不同的边界框。锚框的生成锚框的生成具有很多方式,但是基础为以像素点为中心扩展,主要参数:边框大小:s,高宽比:r,其中边框大小 s 为站原始图像的比例设输入图像的高度为hhh,宽度为www,则生成锚框的宽度为:sr∗h/ws \sq原创 2021-10-11 16:04:54 · 1729 阅读 · 3 评论