贝叶斯定理的三个视角

计算视角

在计算层面,贝叶斯公式简化了条件概率的计算
P ( A ∣ B ) = P ( A B ) P ( B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(AB)=P(B)P(BA)P(A)

基本比率视角

首先定义
A = 患 病 的 人 , B = 检 测 有 病 的 人 A = 患病的人, B = 检测有病的人 A=B=
假定:
患 病 的 人 口 比 例 P ( A ) = 2 % , 确 诊 率 P ( A ∣ B ) = 90 % 患病的人口比例P(A) = 2\%,确诊率P(A|B) = 90\% P(A)=2%P(AB)=90%
一个例子,在诊断问题中,已知检测的正确率有90%,或者说确诊率为90%,则有:
P ( A ∣ B ) = P ( A ) P ( B ) P ( B ∣ A ) P(A|B) = \frac{P(A)}{P(B)}P(B|A) P(AB)=P(B)P(A)P(BA)
其中 P ( A ) P ( B ) \frac{P(A)}{P(B)} P(B)P(A)就是基本比率,有病人数 : 检测有病人数,而 P ( B ∣ A ) P(B|A) P(BA)就是所谓的确诊率。

主观概率的修正

还是疾病检测的例子,在未做检测之前我们有一个统计好的概率(提前知道的概率也称作是先验概率)也就是2%,当我们做了检查这时在检查为患病的条件下的患病率就成了15.5%
患 病 的 人 口 比 例 P ( A ) = 2 % 患病的人口比例P(A) = 2\% P(A)=2%
在加上检测条件的时候
P ( A ∣ B ) = P ( B ∣ A ) P ( B ) P ( A ) = 15.5 % P(A|B) = \frac{P(B|A)}{P(B)}P(A) = 15.5\% P(AB)=P(B)P(BA)P(A)=15.5%
说明新加入的条件对概率进行了修正使得计算得到的概率更加接近于真实概率。
其 中 P ( B ∣ A ) P ( B ) 起 到 了 概 率 修 正 的 作 用 。 其中\frac{P(B|A)}{P(B)} 起到了概率修正的作用。 P(B)P(BA)
多次检测可以提高预测精度也是这个道理,可以理解为加上了不同的约束条件,在上一次结果的基础上不断的进行修正逼近于真实概率。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elong_Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值