数学
文章平均质量分 62
Elong_Hu
Live to Make A Difference.
展开
-
《从零开始:机器学习的数学原理和算法实践》关于微积分部分的启发
目录飞矢不动的破解微积分的目的理解导数的两个角度从瞬时速度来理解导数从近似运动来理解导数导数的直观理解直观理解泰勒公式的来龙去脉飞矢不动的破解“每一瞬间箭都是静止的”这句话本身就有问题。“每一瞬间”就是每一个时刻,每一个时刻箭当然会处在某个位置上,但是“静止”是一个跟“时间段”有关联的概念,不存在某个时刻是“静止”还是“运动”的说法。me:现在看来就是混淆了点的概念与区间的概念。也就是必须经历一段时间才能够知道是静止还是运动。微积分的目的近似,近似!第一种情况,用常数项近似代替某个函数在某点附近原创 2022-02-19 17:49:02 · 1227 阅读 · 0 评论 -
最小二乘法的两个观点
两个观点看最小二乘法写在前面统计学角度的最优化问题线性代数角度的近似解写在前面之前在学习《机器学习基石》的线性回归章节的时候,林老师在最后的部分给了最小二乘的另一种观点当时很不理解。之后在《线性代数及其应用》的目录上看到最小二乘法的内容但是由于那时还有其他的事情要做,所以就暂时没有看。今天在《从零开始:机器学习的数学原理和算法实践》读到对应的内容这一次是从线性代数的近似解角度切入的。统计学角度的最优化问题从统计学角度来看线性回归无非就是找到一条直线去尽可能的拟合图中的散点。拟合的标准就是使得直线到原创 2022-02-16 22:06:01 · 773 阅读 · 0 评论 -
3分钟读懂P问题与NP问题
之前也读过P问题与NP问题相关的文章,但是没有能够理解清楚(还是自己的理解能力与知识积累比较差)现在重新梳理一下。P问题P :Polynomial 多项式的意思。能够在多项式时间内解决的问题。NP问题NP:Nondeterministic Polynomial 非确定性多项式问题。注意:不是Non-polynomial(非多项式问题)。能够在多项式时间内验证(是否正确)的问题。P与NP的关系显然P问题一定能够在多项式时间下验证其结果所以P问题是NP问题。同时P问题是能够在.原创 2022-02-11 16:55:13 · 7213 阅读 · 2 评论 -
贝叶斯定理的三个视角
文章目录计算视角基本比率视角主观概率的修正计算视角在计算层面,贝叶斯公式简化了条件概率的计算P(A∣B)=P(AB)P(B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(AB)=P(B)P(B∣A)P(A)基本比率视角首先定义A=患病的人,B=检测有病的人A = 患病的人, B = 检测有病的人A=患病的人,B=检测有病的人则:患病的人口比例P(A)=2%,确诊率原创 2022-02-10 17:56:34 · 518 阅读 · 0 评论 -
机器学习中最优化算法的脉络
主要分为是否约束,与搜索方向两个维度。原创 2022-01-26 17:59:54 · 1200 阅读 · 1 评论 -
《你学的数学可能是假的》的触动笔记
数学的精神:不在于玩弄多么高大上的概念,而是一种创造性的解决方法。一些生活中的数学技巧:数学作为一种工具需要记住一些二级公式。被误解的天才:船长问题:还没有审题就开始计算。被误解的天才:不受污染的孩子进行的独立思考往往是新东西出现的地方。合乎逻辑但是与传统的东西背道而驰可能就是一种创新。数学的学习:重要的不是结论是什么而是这个中间的过程。这个过程正是训练思维的过程。为什么懂得那么多道理却过不好这一生,就是产生了获取了信息就以为自己做到了的幻觉。横向思维:...原创 2021-03-08 20:30:56 · 340 阅读 · 2 评论 -
矩阵的意义
说明一直想总结一下以前读过的一片文章来概括一下自己对矩阵的重新认识。首先说明一下这篇文章是《神奇的矩阵》建议大家有空可以去读一下原文这是一片很不错的文章。作者洋洋洒洒的讲述了矩阵背后的意义,让我对矩阵的认识上升了一个台阶。在此感谢作者!我在这里只是对自己所学的总结。相信大家读完之后一定能够明白一些矩阵的核心概念背后的物理意义。空间首先说空间的特质就是可以容纳运动,这里的运动更加准确的来...原创 2018-06-12 21:53:32 · 28911 阅读 · 8 评论