一、 思路
背单词相似的很容易混,所以找出所有相似的进行重点突破。
使用Levenshtein计算单词相似度
二、代码
1、导入表,计算相似度并输出
数据在单词表.xlsx
可以添加音标,例句等其他列。
import pandas as pd
import numpy as np
import difflib
import Levenshtein
# def get_equal_rate(str1, str2):
# return difflib.SequenceMatcher(None, str1, str2).quick_ratio()
def get_equal_rate(str1, str2):
try:
return round(Levenshtein.ratio(str1, str2),2)
except:
print(str1)
exit(1)
sheet = pd.read_excel('单词表.xlsx',sheet_name='Sheet1')
sheet.dropna(axis = 0,inplace=True)
sheet['first']=''
sheet['first_mean']=''
sheet['second']=''
sheet['second_mean']=''
sheet['third']=''
sheet['third_mean']=''
sheet['first_similar']=''
sheet['second_similar']=''
sheet['third_similar']=''
sheet['sort']=''
for a in range(len(sheet)):
text= sheet