python 异常

常用异常

  • Exception 几乎所有的异常类都是从它派生而来的
  • AttributeError 引用属性或给它赋值失败时引发
  • OSError 操作系统不能执行指定的任务(如打开文件)时引发,有多个子类
  • IndexError 使用序列中不存在的索引时引发,为LookupError的子类
  • KeyError 使用映射中不存在的键时引发,为LookupError的子类
  • NameError 找不到名称(变量)时引发
  • SyntaxError 代码不正确时引发
  • TypeError 将内置操作或函数用于类型不正确的对象时引发
  • ValueError 将内置操作或函数用于这样的对象时引发:其类型正确但包含的值不合适
  • ZeroDivisionError 在除法或求模运算的第二个参数为零时引发

自定义异常类

class SomeCustomException(Exception): pass 

异常捕获

try:
    x = int(input('Enter the first number: '))
    y = int(input('Enter the second number: '))
    print(x / y)
except ZeroDivisionError:
    print("The second number can't be zero!") 

raise

将一个类(必须是Exception的子类)或实例作为参数。将类作为参数时,将自动创建一个实例

不提供参数

在与用户交互的会话中,抑制异常很有用;但在程序内部使用时,引发异常是更佳的选择

class MuffledCalculator:
    muffled = False
    def calc(self, expr):
    try:
        return eval(expr)
    except ZeroDivisionError:
        if self.muffled:
            print('Division by zero is illegal')
        else:
            raise 
>>> calculator.muffled = True
>>> calculator.calc('10 / 0')
Division by zero is illegal 

多个错误处理

try:
    x = int(input('Enter the first number: '))
    y = int(input('Enter the second number: '))
    print(x / y)
except ZeroDivisionError:
    print("The second number can't be zero!")
except TypeError:
    print("That wasn't a number, was it?") 

try:
     x = int(input('Enter the first number: '))
     y = int(input('Enter the second number: '))
     print(x / y)
except (ZeroDivisionError, TypeError, NameError):
    print('Your numbers were bogus ...') 
    
try:
     x = int(input('Enter the first number: '))
     y = int(input('Enter the second number: '))
     print(x / y)
except (ZeroDivisionError, TypeError) as e:
    print(e) 
    
//除Exception外还有SystemExit和KeyboardInterrupt
try:
     x = int(input('Enter the first number: '))
     y = int(input('Enter the second number: '))
     print(x / y)
except:
    print('Something wrong happened ...') 

finally

//在发生异常时执行清理工作,
try:
    1 / 0
except NameError:
    print("Unknown variable")
else:
    print("That went well!")
finally:
    print("Cleaning up.") 

案例

//异常
while True:
     try:
         x = int(input('Enter the first number: '))
         y = int(input('Enter the second number: '))
         value = x / y
         print('x / y is', value)
     except:
         print('Invalid input. Please try again.')
     else:
        break 

def describe_person(person):
    print('Description of', person['name'])
    print('Age:', person['age'])
    if 'occupation' in person:
        print('Occupation:', person['occupation']) 
 
def describe_person(person):
    print('Description of', person['name'])
    print('Age:', person['age'])
    try:
        print('Occupation:', person['occupation'])
    except KeyError: pass 
    
try:
    obj.write
except AttributeError:
    print('The object is not writeable')
else:
    print('The object is writeable') 
    
//警告
>>> from warnings import filterwarnings
>>> filterwarnings("ignore")
>>> warn("Anyone out there?")
>>> filterwarnings("error")
>>> warn("Something is very wrong!")
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
UserWarning: Something is very wrong!
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值