Numpy 科学计算库详解

Numpy 是 Python 科学计算的基础库,提供高效多维数组对象(ndarray)和丰富的数学运算功能。本文详细介绍了 Numpy 的基本用法,包括数组创建、数值类型、切片索引、形状处理、类型转换、统计函数、广播概念,以及 random 函数(如 rand(), randn(), randint())和 meshgrid 函数的应用。Numpy 的优势在于其向量化运算和优化的 C API,提高了计算速度。" 102557546,5889846,《SpringBoot基础教程》视频上线,"['springboot基础篇', '课程', '实战']
摘要由CSDN通过智能技术生成

Numpy 是一个开源的 Python 科学计算库,它是 Python 科学计算库的基础库,许多其他著名的科学计算库如Pandas,Scikit-learn 等都要用到 Numpy 库的一些功能。 

一、Numpy 基本用法

1、Numpy 数组对象

Numpy 中的多维数组称为 ndarray,这是 Numpy 中最常见的数组对象。ndarray 对象通常包含两个部分:

  • ndarray 数据本身;
  • 描述数据的元数据;

Numpy 数组的优势:

  • Numpy 数组通常是由相同种类的元素组成的,即数组中的数据项的类型一致。这样有一个好处,由于知道数组元素的类型相同,所以能快速确定存储数据所需空间的大小;
  • Numpy 数组能够运用向量化运算来处理整个数组,速度较快;而 Python 的列表则通常需要借助循环语句遍历列表,运行效率相对来说要差;
  • Numpy 使用了优化过的 C API,运算速度较快;

关于向量化和标量化运算,对比下面的参考例子就可以看出差异。

使用 python 的 list 进行循环遍历运算:

def pySum():
    a = list(range(10000))
    b =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wespten

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值