Numpy 是一个开源的 Python 科学计算库,它是 Python 科学计算库的基础库,许多其他著名的科学计算库如Pandas,Scikit-learn 等都要用到 Numpy 库的一些功能。
一、Numpy 基本用法
1、Numpy 数组对象
Numpy 中的多维数组称为 ndarray,这是 Numpy 中最常见的数组对象。ndarray 对象通常包含两个部分:
- ndarray 数据本身;
- 描述数据的元数据;
Numpy 数组的优势:
- Numpy 数组通常是由相同种类的元素组成的,即数组中的数据项的类型一致。这样有一个好处,由于知道数组元素的类型相同,所以能快速确定存储数据所需空间的大小;
- Numpy 数组能够运用向量化运算来处理整个数组,速度较快;而 Python 的列表则通常需要借助循环语句遍历列表,运行效率相对来说要差;
- Numpy 使用了优化过的 C API,运算速度较快;
关于向量化和标量化运算,对比下面的参考例子就可以看出差异。
使用 python 的 list 进行循环遍历运算:
def pySum():
a = list(range(10000))
b =
Numpy 是 Python 科学计算的基础库,提供高效多维数组对象(ndarray)和丰富的数学运算功能。本文详细介绍了 Numpy 的基本用法,包括数组创建、数值类型、切片索引、形状处理、类型转换、统计函数、广播概念,以及 random 函数(如 rand(), randn(), randint())和 meshgrid 函数的应用。Numpy 的优势在于其向量化运算和优化的 C API,提高了计算速度。"
102557546,5889846,《SpringBoot基础教程》视频上线,"['springboot基础篇', '课程', '实战']
订阅专栏 解锁全文
577

被折叠的 条评论
为什么被折叠?



