Numpy 是一个开源的 Python 科学计算库,它是 Python 科学计算库的基础库,许多其他著名的科学计算库如Pandas,Scikit-learn 等都要用到 Numpy 库的一些功能。
一、Numpy 基本用法
1、Numpy 数组对象
Numpy 中的多维数组称为 ndarray,这是 Numpy 中最常见的数组对象。ndarray 对象通常包含两个部分:
- ndarray 数据本身;
- 描述数据的元数据;
Numpy 数组的优势:
- Numpy 数组通常是由相同种类的元素组成的,即数组中的数据项的类型一致。这样有一个好处,由于知道数组元素的类型相同,所以能快速确定存储数据所需空间的大小;
- Numpy 数组能够运用向量化运算来处理整个数组,速度较快;而 Python 的列表则通常需要借助循环语句遍历列表,运行效率相对来说要差;
- Numpy 使用了优化过的 C API,运算速度较快;
关于向量化和标量化运算,对比下面的参考例子就可以看出差异。
使用 python 的 list 进行循环遍历运算:
def pySum():
a = list(range(10000))
b =