列表求差集

a=[2,3,4,5]

b=[2,5,]

set(a).difference(b)
在Pandas中,可以使用concat()函数将Series和DataFrame对象组合在一起。要两列的差集,可以使用不同的方法实现。 方法一是平行匹配,通过比较两列的元素来差集。使用df[df["col01"] != df["col02"]]可以得到平行匹配的差集结果。 方法二是交叉匹配,通过集合运算符或循环判断来差集。使用集合的差集运算符或者使用列表推导式来实现。例如,可以使用list(set(list_dev).difference(set(list_prod))) 或者 list(set(list_prod)^set(list_dev))来得到交叉匹配的差集结果。 另外,还可以使用concat()函数和drop_duplicates()函数来差集。例如,可以使用diff=pd.concat([df1,df2,df2]).drop_duplicates(keep=False)来得到差集结果。 总结来说,Pandas可以通过上述方法来差集。具体使用哪种方法取决于你的需和数据结构。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Pandas两个dataframe差集 详解](https://blog.csdn.net/guoyc439/article/details/124165334)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Python语言学习:利用pandas对两列字段元素差集(对比两列字段所有元素的异同)](https://blog.csdn.net/qq_41185868/article/details/128799131)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我现在强的可怕~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值