算法分析——Hanoi塔问题


上图为 3 阶 Hanoi 塔

假设有三个命名为 A B C 的塔座 ,在塔座A上插有n个直径大小不相同,由小到大编号为1 ,2 ,3 ,··· ,n的圆盘,要求将A座上的圆盘移至塔座C

并按同样的顺序叠排

圆盘移动必须遵守下列规则:

1:每次只能移动一个圆盘 2:圆盘可以插在任意一个塔座上 3:任何时刻都不能将一个较大的圆盘放在一个较小的圆盘上

 

该问题的复杂性:

若有n个盘子,則移动完所需之次数为2^n - 1,

所以当盘数为64时,则所需次数为: 

2^64 - 1 = 18446744073709551615 

为5.05390248594782e+16年,也就是约5000世纪,如果对这数字没什么概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。

以三阶Hanoi塔为例,我们所需要的7个步骤是:

1——>C

2——>B

1——>B

3——>C

1——>A

2——>C

1——>C
则对于n阶Hanoi塔:

n = 1时只需将编号为1的圆盘从A座移至C座

n > 1时,我们分三个阶段:

1:将A塔座上的n-1个圆盘按照规定移至到B塔座

2:将编号为n的圆盘由A座移至C座

3:利用A塔座,将B塔座上的n-1个圆盘按规定移至到C塔座

如何将n-1个圆盘由一个塔座移至到另一个塔座是一个和原问题有相同特征属性的问题,只是问题的规模小些,我们可以用同样的方法求解,即用到递归函数

代码如下:

#include <stdio.h>

void hanoi(int i , char A , char B , char C);
void move(int i , char x , char y);

int main()
{
    int n ;
    printf("请输入n的值:");
    scanf("%d",&n);

    hanoi(n , 'A' , 'B' , 'C');

    return 0 ;
}

void hanoi(int i , char A , char B , char C)
{
    if(i == 1)
    {
        move(i , A , C);
    }
    else
    {
        hanoi(i - 1 , A , C , B);   //函数递归调用 
        move(i , A , C);
        hanoi(i - 1 , B , A , C);
    }
}

void move(int i , char x , char y)
{
    static int c = 1 ;   //局部变量i申明为 static 
    printf("%d: %d from %c ——> %c \n", c++ , i , x , y);
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值