林轩田机器学习基石笔记3:机器学习分类

笔者正处于学习阶段,任何问题欢迎指正。

0. 前言

机器学习通过样本输出维度,输入维度,学习方法等可以分成许多类别,这篇文章主要屡一下这些关系,首先看一下我做的思维导图,下面我会对每一种类别进行介绍。
这里写图片描述

1. 根据输出空间分类

输出空间 Y 是分类器通过输入特征得出的结果,根据输出空间机器学习可以分为四类。

  • 二分类问题:Y{1,2}。如判断一个人是否生病

    • 多分类问题: Y{1,2,,k} ,当 k=2 时就是二分类问题。如判断细胞是哪种癌细胞。
    • 回归: Y=[lower,upper]R 。如判断病人需要多久出院。
    • 结构学习(structure learning ): Y=structures 。如通过一个句子预测句子的结果(如主谓宾等等)。结果学习对于机器学习是最有挑战的。
    • 2. 根据样本标签分类

      对于给定的样本,我们可以根据是否知道样本标签来进行分类。

      • 监督学习:知道给定样本的标签,如线性回归,决策树等。(Know all yn
      • 无监督学习:不知道样本的标签,如聚类,密度分析等。(Know no yn
      • 半监督学习:部分样本具有标签,如在药物判断时得到样本的标签往往代价很大,我们只知道部分样本的标签来预测药物有效性。(Know some yn
      • 强化学习:没有样本标签,但是知道一些额外信息。如训练狗时,当人类叫狗坐下,狗会做一个动作但是狗并不知道这个动作对不对,但是人类可以给狗一个反馈信息(如做对了给奖赏做错了给惩罚)不断纠正狗的行为。(不知道 yn 但有额外信息)

      3. 根据学习方法分类

      分类器处理样本数据的方式也可分为三种形式。

      • 批学习(batch learning):一次性使用所有样本进行学习,也被形象的称为填鸭式学习。
      • 线上学习(online learning):每次只观测一个样本,并根据预测结果的准确性修正分类器,如PLA,强化学习都是线上学习。
      • 主动学习(active learning):机器具有自己提问的能力,通过提问来修正分类器。

      4. 根据输入空间分类

      样本的输入空间即样本的输入特征,可以对特征的类别进行分类。

      • 具体特征(Concrete Feature):一些具体的统计量,如样本是手写数字时,输入空间为黑色区域的对称性,密度等。
      • 原始特征(Raw Feature):就是样本的原有特征,如样本是手写数字时,输入空间就是数组的二维矩阵。
      • 抽象特征(Abstract Feature):一些难以描述的特征…比如预测一首歌的分数时,输入为歌曲的编号,需要自己提取特征,这通常对机器的负担会比较大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值