最新一部007 电影就要开画了。让影迷万众期待的除了俊年靓女、炫酷动作场面,必然还有詹姆斯·邦德的座驾。在本集中登场的邦德座驾拥有经典全黑车身,还配备了同级别最大的 22 英寸轮毂,刚劲有力,霸气十足!!
无论是两厢还是三厢,不管是 SUV 还是 MPV,轮毂,不仅是颜值担当,更重要的是:作为轮胎的骨架,轮毂集整车的重量、乃至全车人的安危于一身。如今,中国正逐渐成为下一个“车轮上的国家”。庞大的汽车需求带动了汽车零部件市场的快速发展,其中,轮毂的年销售量已达数亿只之多。巨大的需求正推动各个轮毂生产企业提升效率、优化产能并降低成本,从而在日趋激烈的市场竞争中赢得先机。
图片来源:Pixabay
英特尔联合工业自动化和智能化龙头企业信捷电气,基于英特尔® 第11代 酷睿™ 处理器、OpenVINO™ 视觉工具套件以及英特尔® oneAPI库等一系列软硬件产品与技术,集成信捷电气自研机器视觉应用开发平台X-SIGHT VISION STUDIO Pro,打造了全新 AI 轮毂分类方案,助力轮毂生产企业降本增效,实现产能突破。
想突破产能?先突破人工的瓶颈
在典型的轮毂生产工序中,轮毂在经过熔炼加工后,需要经过动平衡检查,才能进入后续流程。然而,不同型号的轮毂质量、高度、尺寸等参数各不相同,用到的检查方法、流程和标准也各不相同,因此往往需要依赖人工进行分类。而这道工序也成为了阻碍轮毂生产企业进一步实现产能提升的瓶颈,在实际生产中,这种方式存在着如下多种问题:
1
人工搬运轮毂耗时,效率低下,无法优化;
2
不断更新的产品型号,需要持续培训工人,成本高昂;
3
高强度分类作业让工人容易疲劳、倦怠,从而导致分类错误。
图一 典型的轮毂生产流程
图二 使用人工方式进行轮毂分类
软硬共同加持,加快 AI 推理,加速效率提升
随着基于机器学习、深度学习的AI方法与技术不断趋于完善,各类面向图像分类/分割的AI解决方案也在轮毂生产领域崭露头角。
信捷电气基于AI的轮毂分类/分割方案搭载了英特尔软硬件产品,采用英特尔® 第11代 酷睿™ 处理器构建方案的基础设施,其以增强的计算处理性能、出色的图形显示能力、以及AI增强功能提供强有力算力,支持轮毂分类需要的 SVM 深度学习模型的训练与推理,从而加速 AI 应用性能。
图三 基于AI的轮毂分类/分割流程
在软件层面,英特尔的 OpenVINO™ 视觉工具套件同样实现了 AI 推理加速。其中内置模型优化器和推理引擎,可利用各种训练好的模型完成优化,从而在不同硬件平台上做到高效推理,支持视觉性能处理。
在该方案中,信捷还引入了英特尔的 oneAPI 库,其中包括面向英特尔® 架构扩展的Scikit-learn (Intel® Extension for Scikit-learn)Python发布版,提升了轮毂分类 SVM 模型的训练速度,而且便于移植、安装和部署。
图四 信捷电气新方案中真实轮毂分类/分割检测场景
英特尔和信捷的AI 边缘计算轮毂分类方案,在多家轮毂生产企业的实际场景中完成大规模部署和应用,在实际生产应用中证明可有效帮助企业突破轮毂分类的瓶颈,并带来了以下明显优势:
1
提升推理精度,加快推理速度:英特尔的软硬件结合,提升了 AI 方案的效能。模型推理精度可达 99% ,体现出深度学习在特征提取中表现良好,推理速度从 531 毫秒降低至 33 毫秒,性能大幅提升。
2
提升分类效率,降低人力成本:某企业应用新方案后,负责一条产线的工人从 12 个减少到 3 个,分类效率提升 12-18 倍,人力成本降低了 75% 左右。
一起携手,进入“指数发展时代”
英国技术思想家 Azeem Azhar 在《指数发展时代》一书中指出:AI 作为通用目的技术(General Purpose Technology,简称 GPT)的一种,和新能源、生物工程等其他 GPT 一起,以协同效应,推动全世界进入指数发展时代。
信捷电气与英特尔的合作为制造业企业未来更快、更好地开发部署和优化大规模AI应用提供了全新思路,并为制造业实施智能化转型提供了最佳实践。
未来,英特尔将与信捷电气等合作伙伴一起,基于硬件的算力优势,结合软件工具的深度优化,充分发挥异构边缘计算和AI的作用,以更低的成本、更灵活的架构,驱动更多工业机器视觉方案落地,助力传统制造业加速智能化升级改造,获得更强的竞争优势,适应指数时代的新挑战。