初识Redis、Memcached

本文探讨了Redis和Hadoop之间的联系,分析了它们在分布式计算及大数据处理领域的应用。Redis作为一种高性能的键值存储数据库,与Hadoop的MapReduce框架在处理不同类型的负载时互为补充。

前言

看到好多东西,都是自己不会的。这不,刷个微博,看到了关键字redis、memcached,这,是什么东西?

正文

这是个探索过程,记录下。
这篇文章是介绍用途 — 为什么要使用redis?
之所以引起注意,在微博上,是因为提起redis和memcached时又提起了分布式和高并发、大数据。这正是寒假前帆哥提到的点,那就探索下喽。
那么,和Hadoop有什么关系呢?
之前只是搭建了个Hadoop的环境,进行了一个分词的demo。真要说再具体点咋回事儿,还真不会。找了下资料:

1.Hadoop是分布式计算开源框架,redis是key-value内存型数据库,Hadoop主要特点是mapreduce,redis是存储在内存中的数据库。
2.redis是一个NoSQL数据库,而且性能很高。

然后,又看到一个类似于redis的数据库叫HBase — HBase可以替代redis吗?
又看了篇博文,得到些有用的信息 — Hadoop,Spark,Habse以及Redis适用场景比较
那么,就联系起来了,redis和hadoop关系很密切,是同一个体系的知识,再进一步学习的话,会遇到的。而Memcached则是和redis差不多的东西,性能没redis好。

NoSql的应用:
1) 大数据时代淘宝、微信、以及微博等都广泛的使用了redis数据库,将一些固定不变的数据例如学校,区域等固定的信息保存在关系型数据库中。然后对于经常变化的数据例如淘宝每个节日都会有比较热门的搜索显示在搜索框,当节日过去关键字自动删除,为了便于管理,可以将这些数据保存在redis数据库中,并设置过期时间,到达时间就自动删除。
2)为了缓解数据库压力,微博首先将发送的微博保存到redis数据库,自己可以立即查看到,然后将内存中的数据同步到关系型数据库。

总结

作为探索,还是很有收获的,知道了更多的信息,对于分布式和大数据。
也许无意间的回眸,却决定了之后的很多事情。帆哥虽然没带着入门,但是却好像是点了一条路,然后会留意这方面的信息,不知不觉的,又学习了些基础知识。

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值