《机器学习实战 基于sklearn和TensorFlow》
此专栏自己刷书的笔记,不会把书本上所有流程照搬过来,只选择性将刷书过程中遇到的问题及解决方案,或者重要的知识点、常用的api记录下来,方便以后翻看。
zuckzhao95
无
展开
-
《机器学习实战》第三章 分类
《机器学习实战》第三章 分类文章目录《机器学习实战》第三章 分类MNIST数据集训练一个二元分类器性能考核精度和召回率在这里插入图片描述多类别分类器错误分析MNIST数据集我用的scikit-learn是0.22版本的已经取消了fetch_mldata原书代码为:from sklearn.datasets import fetch_mldatamnist = fetch_mldata('MNIST original')mnist这样会加载不下来数据库,所以我们只能自己去网上获取数据集,让后原创 2020-07-16 19:53:50 · 846 阅读 · 0 评论 -
《机器学习实战》第二章 端到端的机器学习项目①
《机器学习实战》第二章 端到端的机器学习项目①文章目录《机器学习实战》第二章 端到端的机器学习项目①选择性能指标快速查看数据创建测试集完全的随机划分随机生成数种子random.seed()hashlibScikit-Learn提供的函数分层抽样划分从数据探索和可视化中获得洞见corr()方法来计算每对属性之间的标准相关系数scatter_matrix()显示各属性之间的依赖关系机器学习算法的数据准备数据清理处理文本和分类属性LabelEncoder转换器OneHotEncoder编码器自定义转换器特征缩放原创 2020-07-10 12:27:34 · 592 阅读 · 0 评论