1. 题目
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i,
ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104
Related Topics 数组 双指针
👍 2128 👎 0
2. 题解
2.1 解法1: 双指针法
- 设置两个指针分别从左右边界开始, 每次计算容器面积, 并与历史最大值比较赋值
- 之后选取两个指针对应元素更小的指针向中间移动
class Solution {
public int maxArea(int[] height) {
int max = 0;
int left = 0, right = height.length - 1;
while (left < right) {
int h = Math.min(height[left], height[right]);
int area = h * (right - left);
max = Math.max(max, area);
if (height[left] <= height[right]) {
left++;
} else {
right--;
}
}
return max;
}
}
参考;
官方题解