盛最多水的容器(中等)
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解:这道题乍一看,就是寻找两个数字之间的最小值乘上他俩数字之间的距离,求出最大值,比如1和8之间的的距离为1,最小值为1,因此面积就是1,1和6之间距离为2,最小值为1,面积就是2。先用俩for循环直接暴力解题先试一下:
class Solution {
public:
int maxArea(vector<int>& height) {
int a=0;
int i,j,n=height.size();
for(i=0;i<n;i++){
for(j=i;j<n;j++){
int res=min(height[i],height[j])*(j-i);
if(a<res)
a=res;
}
}
return a;
}
};
好吧,果然超时了
关键方法:双指针
定义i和j两个指针分别指向数组的左右两端,然后两个指针向中间搜索,每移动一次算一个值和结果比较取较大的,容器装水量的算法是找出左右两个边缘中较小的那个乘以两边缘的距离。
那么为什么要移动值最小的那一个呢?我们想想看,如果i指针指向的数字x是小于j指向的数字y的,即x<y,那么如果移动y(由于是从边界开始移动的,i和j之间的距离只会越来越小,y只能向左移动),那么不管y的值变大还是变小,面积都会变小,如果y变大,取的值还是x,而距离变小了;如果y变小,取得值比x小,距离变小,那么就更小了!
因此移动较大的值会使得面积更小,那么只能移动较小的值了,即x不能作为最左边的边界,将i向右移动,如果x的值变大了,那么重新比较x和y的值,算出面积和之前的比较,如果x变小了,那么继续移动i,重复这个步骤,就可以找到面积最大的x和y。
参考
class Solution{
public:
int maxArea(vector<int>& height){
int res=0;
int i=0,j=height.size()-1;
while(i<j){
res=max(res,(min(height[i],height[j])*(j-i)));
if(height[i]<height[j])
i++;
else
j--;
}
return res;
}
};
对上面的方法进行了小幅度的优化,对于相同的高度们直接移动i和j就行了,不再进行计算容量
class Solution {
public:
int maxArea(vector<int>& height) {
int res = 0, i = 0, j = height.size() - 1;
while (i < j) {
int h = min(height[i], height[j]);
res = max(res, h * (j - i));
while (i < j && h == height[i]) ++i;
while (i < j && h == height[j]) --j;
}
return res;
}
};