1. 题目
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
Related Topics 动态规划
👍 813 👎 0
2. 题解
2.1 解法1: 动态规划
思路: 题意转化为 是否可以从输入数组中挑选出一些正整数,使得这些数的和 等于 整个数组元素的和的一半设为 target
- 状态数组: dp[i][j] 表示从数组的 [0,i] 下标范围内选取若干个正整数(可以是 0 个),是否存在一种选取方案使得被选取的正整数的和等于 j
- 状态转移:
- a. 不选 nums[i], dp[i][j]= dp[i-1][j]
- b. 选 nums[i]
当 j>=nums[i], dp[i][j] = dp[i-1][j-nums[i]]
- 初始化: 和为0,都为 true, dp[i][0]=true, 同时填充第0行, dp[0][nums[0]]=true
- 输出结果: dp[len-1][target], 即数组选一些数的和可以为整个数据元素和的一半
- 情况特判: 先求数组总和, 若不为偶数, 则直接返回false
class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
int len = nums.length;
for (int i = 0; i < len; i++) {
sum += nums[i];
}
if (sum % 2 == 1) {
return false;
}
int target = sum / 2;
boolean[][] dp = new boolean[len][target + 1];
for (int i = 0; i < len; i++) {
dp[i][0] = true;
}
if (nums[0] <= target) {
dp[0][nums[0]] = true;
}
for (int i = 1; i < len; i++) {
for (int j = 1; j <= target; j++) {
if (nums[i] <= j) {
dp[i][j] = dp[i - 1][j - nums[i]] || dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[len - 1][target];
}
}
空间优化: 由于更新dp 时, 每一行只与上一行有关, 所以可以将 dp 降一维度,
但需要特别注意的是, 第二层的循环我们需要从大到小计算,因为如果我们从小到大更新 dp 值,
那么在计算 dp[j] 值的时候,dp[j−nums[i]] 已经是被更新过的状态,不再是上一行的 dp 值
class Solution {
public boolean canPartition(int[] nums) {
int len = nums.length;
int sum = 0;
for (int i = 0; i < len; i++) {
sum += nums[i];
}
if (sum % 2 == 1) {
return false;
}
int target = sum / 2;
boolean[] dp = new boolean[target + 1];
if (nums[0] <= target) {
dp[nums[0]] = true;
}
for (int i = 1; i < len; i++) {
for (int j = target; j >= nums[i]; j--) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[target];
}
}