Leetcode 416. 分割等和子集 (中等) 动态规划 01 背包的变体

本博客介绍如何使用动态规划解决LeetCode 416题,即判断一个包含正整数的数组能否分割成两个元素和相等的子集。通过将问题转化为01背包问题,建立状态转移方程,优化空间复杂度,最终实现从后往前的反向遍历来避免结果互相影响。示例代码和详细解析助你理解算法思路。
摘要由CSDN通过智能技术生成

题目描述:

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意:

    每个数组中的元素不会超过 100
    数组的大小不会超过 200

示例 1:

输入: [1, 5, 11, 5]

输出: true

解释: 数组可以分割成 [1, 5, 5] 和 [11].

 

示例 2:

输入: [1, 2, 3, 5]

输出: false

解释: 数组不能分割成两个元素和相等的子集.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/partition-equal-subset-sum
 

思路:

 考虑转化为动态规划的01背包问题

即背包容量为sum/2,有nums.size()个物品(即数字),每个物品的重量为nums[i]。

是否存在一种装法,能够正好将背包装满。

 状态表示:dp[i][j] = x; 表示:对于前i个物品,当前背包容量为j时,

                   若x为true,则说明刚好将背包装满,若为false,则说明不能恰好将背包装满。

        根据这个定义,我们最终的答案是,dp[n][sum/2].

 base case :

 dp[...][0] =

题目描述: 给定一个只包含正整数的非空数组,是否可以将这个数组分成两个子集,使得两个子集的元素和相等。 示例: 输入:[1, 5, 11, 5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11]。 解题思路: 这是一道经典的 0-1 背包问题,可以使用动态规划或者回溯算法解决。 使用回溯算法,需要定义一个 backtrack 函数,该函数有三个参数: - 数组 nums; - 当前处理到的数组下标 index; - 当前已经选择的元素和 leftSum。 回溯过程中,如果 leftSum 等于数组元素和的一半,那么就可以直接返回 true。如果 leftSum 大于数组元素和的一半,那么就可以直接返回 false。如果 index 到达数组末尾,那么就可以直接返回 false。 否则,就对于当前元素,有选择和不选择两种情况。如果选择当前元素,那么 leftSum 就加上当前元素的值,index 就加 1。如果不选择当前元素,那么 leftSum 不变,index 也加 1。最终返回所有可能性的结果中是否有 true。 Java 代码实现: class Solution { public boolean canPartition(int[] nums) { int sum = 0; for (int num : nums) { sum += num; } if (sum % 2 != 0) { return false; } Arrays.sort(nums); return backtrack(nums, nums.length - 1, sum / 2); } private boolean backtrack(int[] nums, int index, int leftSum) { if (leftSum == 0) { return true; } if (leftSum < 0 || index < 0 || leftSum < nums[index]) { return false; } return backtrack(nums, index - 1, leftSum - nums[index]) || backtrack(nums, index - 1, leftSum); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值