- 博客(15)
- 收藏
- 关注
原创 编译pytorch版本的PreciseRoIPooling
编译pytorch版本的PreciseRoIPooling中遇到的问题找不到cuda include cuda_runtime_api的问题nvcc fatal : Unsupported gpu architecture 'compute_86'关于cuda版本兼容性的问题Dimp模型中使用pr pooling来池化目标区域(ROI)特征,以此初始化滤波器,使用到的prroi_pool模块来自于github,在编译过程中遇到些问题。找不到cuda include cuda_runtime_api的
2021-04-19 19:17:50 4629 6
原创 ubuntu20.04 多用户配置问题记录
前提:主机ubuntu20.04系统,设置多用户访问和cuda配置,记录一些设置过程和存在的问题使用GUI添加新用户,一个管理员账户和其他标准账户cuda配置在管理员用户下配置全局共享的cuda计算工具(省的其他用户重新安装配置一次),按照正常安装过程安装cuda 11(安装至/usr/local/)和cudnn 8.1,cudnn正常复制到对应目录,在添加环境变量的时候,修改.bashrc文件:gedit ~/.bashrc#添加路径export LD_LIBRARY_PATH=$LD_LIB
2021-03-23 17:31:50 2145 1
原创 JMMAC rgbt tracking 文章阅读
[Jointly Modeling Motion and Appearance Cues for Robust RGB-T Tracking 阅读] arXiv.orgcontributions主要特点在于表观信息和运动建模结合起来进行目标跟踪可离线训练的模态融合权重学习模块(单一模态的跟踪再进行融合)总结起来就是多模态融合与运动信息建模。framework跟踪过程主要包括:相机运动补偿单模态目标跟踪(表观模型)MFNet聚合模态跟踪结果目标运动估计跟踪器目标表观模型与运动估计
2021-03-02 16:45:46 1087
原创 matlab递归删除文件夹下所有内容
matlab的rmdir用于删除空文件夹,delete用于删除单个文件,所以写了一个递归调用删除指定文件夹下所有内容的matlab函数。本来这种操作是风险较高的,文件删除操作一定要使用绝对路径,写这里就是因为不小心把路径改成了 ‘.\’。结果导致工作目录下的文件都没了,记一次惨痛的教训。。。function deleteTemp(dirPath)DIRS=dir(dirPath);n=length(DIRS);for i=1:n if (~strcmp(DIRS(i).name,'.') .
2020-12-09 19:35:54 1875 1
原创 图卷积网络概述笔记
图卷积网络概述笔记谱方法空间方法开一个博客把听的基础概念给记录下来,随笔瞎记呗谱方法不像图像中的卷积操作和空间方法,谱方法在谱域定义卷积操作,把图变换到谱域进行卷积之后再变换到图域。给定无向图G=(V,E,W),点集V(n=|V|),边集E,权重集W∈Rn×nW \in R^{n \times n}W∈Rn×n,每个节点如果有d维特征,所有节点的特征矩阵就是X∈Rn×dX \in R^{n \times d}X∈Rn×d图的拉普拉斯矩阵:L=D-W,D是度矩阵Dii=∑jWij\boldsymbo
2020-10-23 18:26:20 992
原创 tensorflow2.2:远程服务器部署TensorFlow Serving with Docker
TensorFlow Serving with Docker使用docker的TensorFlow Serving相关部署流程,在tensorflow的网站上演示的比较清楚链接: https://tensorflow.google.cn/tfx/serving/docker?hl=zh_cn。远程服务器的部署有几个具体细节问题在实际踩坑之后才注意到,所以在这里作为记录。目的是使用centos的一台服务器部署TensorFlow Serving并远程调用模型实现数字分类任务。先看官方示例流程如下:# D
2020-06-29 21:19:10 690
原创 SAT:State-Aware Tracker for Real-Time Video Object Segmentation 阅读
State-Aware Tracker for Real-Time Video Object Segmentation.链接: https://arxiv.org/abs/2003.00482.针对video object segmentation (VOS)任务的跟踪器State-Aware Tracker (SAT)方法示意:粉色的联合分割网络得到目标mask,蓝色的状态评估器根据分割结果评估状态得分,然后产生两个反馈:剪切策略切换和全局特征的动态更新。SAT分为三部分:联合分割网络,状态评估
2020-06-06 17:19:34 2248
原创 GlobalTrack 笔记
GlobalTrack : A Simple and Strong Baseline for Long-term Trackinghttps://arxiv.org/abs/1912.08531 link长期跟踪的一个关键在于更大的区域(通常是整个图像)中搜索目标,以应对目标丢失。作者提出GlobalTrack进行全局实例搜索的跟踪器;GlobalTrack基于two-stage的目标检测器,根据单个查询图像作为指导,对任意实例进行全图像和多尺度搜索。最重要的是不需要在线学习,也不需要对位置或尺度变化进
2020-05-16 23:29:10 2852 7
原创 SiamFC++笔记
SiamFC++: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines文章根据这些思路:引入分类和目标状态估计分支(G1),无歧义的分类得分(G2),无先验知识的跟踪(G3)和评估质量得分(G4)来设计SiamFC ++。SiamRPN ++和SiamFC ++的比较(红色部分代表得分高的区域): guide:G1 : 分类和状态估计任务的分离:分类任务将目标从干扰物和背景中分类出来,目标状态
2020-05-16 22:42:20 9138 4
原创 FCOT: Fully Convolutional Online Tracking 笔记
FCOT:Fully Convolutional Online Tracking.https://arxiv.org/abs/2004.07109作者将特征提取,分类和回归放在一个网络体系结构中实现:采用全卷积网络来定位目标中心并回归目标中心到目标上下左右边缘的距离。Overview基于encoder和decoder的结构,FCOT能输出更大的特征图,带来更高的定位精度。对于回归,使用最速下降法在线优化回归模型生成器。对于分类,利用DiMP的方法在线优化目标模型生成器。使用Resnet-
2020-05-16 21:27:23 1120
原创 编译dcn v2: Error checking compiler version for cl
编译dcn v2,找不到msvc编译器(电脑上vs 2019 2017共存,默认2019但cuda toolkit不支持)# errorUserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件解决办法:指定编译器位置# for vs2017call "C:\Program Files (x8...
2020-05-03 17:10:32 1623
原创 ROAM: Recurrently Optimizing Tracking Model 阅读笔记
ROAM: Recurrently Optimizing Tracking Model文章提出模型ROAM采用生成关于跟踪目标的heatmap响应和边框回归的方法跟踪目标:使用可调大小的卷积滤波器来适应对象的形状变化,模型无需设计锚点。采用离线训练递归神经优化器,元学习更新跟踪模型的方法,使模型能够迅速收敛。Resizable Tracking Model 模型包含两个部分:基础的...
2020-04-06 14:51:02 1778
原创 Deformable ConvNets v2阅读笔记
Deformable ConvNets v2: More Deformable, Better Resultshttps://arxiv.org/abs/1811.11168v2 link. 文章主要针对Deformable Convolutional Networks的几何变化可能超出目标区域,从而导致特征被图像的其他无关内容影响的问题进行改进,从而提出了Deformable ConvNe...
2020-03-30 16:51:48 457
原创 Deformable Convolutional Networks 阅读笔记
Deformable Convolutional Networks(可变形卷及网络)文章:https://arxiv.org/abs/1703.06211 link.概述 这项工作中,作者引入了两个新模块来增强CNN的建模能力:deformable convolution (可变形卷积)和deformable RoI pooling(可变形ROI池化)。 两者均基于以下思路:在模块中增加具...
2020-03-30 15:49:13 411 1
原创 Ubuntu下编译caffe并训练自定义数据
在pycharm下 使用caffe 训练自定义数据集caffe编译这部分主要参见 https://www.linuxidc.com/Linux/2019-05/158422.htm为了方便一并记下来,由于系统环境的不同网上的配置各式各样,我的系统环境:ubuntu 18.04+CUDA 10.1+cudnn 7.5+python 3.6+opencv 4.0安装依赖项apt ins...
2019-07-15 19:34:06 190
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人