组合数学(5)——拉丁方与H矩阵例题

1.前言

之前一直讲拉丁方与H矩阵的定理和证明,这次我们主要讲解一些例题。一个是关于构造N阶H矩阵的,另一个则是关于拉丁方的,都是课后习题。

2. 构造N阶矩阵的方法

构造N阶矩阵的方法有3种:直积,定理7.2.2和定理7.2.3.下面里的定理和公式的具体内容均可以参见上一章《Hardmard矩阵》。我们这里讲一讲怎么构造。

2.1直积

这种方法适合数目比较小而且容易获得的H矩阵,例如H4矩阵,就可以由H2矩阵和H2矩阵的直积得到,例如:
H 2 = [ 1 1 1 − 1 ] H_2= \left[ \begin{matrix} 1 & 1 \\ 1 & -1 \end{matrix} \right] H2=[1111]
则其直积结果为:
H 2 × H 2 = [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] H_2 \times H_2=\left[ \begin{matrix} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1 \end{matrix} \right] H2×H2=1111111111111111

2.2使用定理7.2.3

这个定理适用于 n = h ( p α + 1 ) n=h(p^\alpha+1) n=h(pα+1),其中p为素数,且h为已知存在的H矩阵(如2,4,8等),且 p α ≡ 1 ( m o d 4 ) p^\alpha\equiv1(mod 4) pα1(mod4),例如:构造一个24阶的H-矩阵。

根据定理7.2.3,令 p = 5 , α = 1 , h = 4 p=5,\alpha=1,h=4 p=5,α=1,h=4,结合引理7.2.4和引理7.2.1即可获得。

2.3使用定理7.2.2

这个定理适用于 n = p α + 1 n=p^\alpha+1 n=pα+1其中p为素数,且 p α ≡ 3 ( m o d 4 ) p^\alpha\equiv3(mod 4) pα3(mod4)。例如:构造一个28阶的H-矩阵。

根据定理7.2.2,令 p = 3 , α = 3 p=3,\alpha=3 p=3,α=3即可,结合引理7.2.1获得Q,即可证明。

3.拉丁方

关于拉丁方的预备知识可以参考《拉丁方矩阵》,这里主要讲2个题目。

3.1构造ST(21)

这里的ST指的是Steiner三连系。本文只介绍一种构造三连系的方法,数量少的可以直接枚举出来。这里只介绍可以使用定理8.3.8构造出来的ST,即已知2个三连系ST(v1)和ST(v2),可以构造出ST(v1v2)。
这里以ST(21)为例。

根据定理8.3.8,令v1=3,v2=7.
ST(3)={1,2,3},ST(7)={{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6}}

现设 S = { C 11 , C 12 , . . . , C 17 , C 21 , C 22 , . . C 27 , C 31 , C 32 , . . . , C 37 } S=\{C_{11},C_{12},...,C_{17},C_{21},C_{22},..C_{27},C_{31},C_{32},...,C_{37}\} S={C11,C12,...,C17,C21,C22,..C27,C31,C32,...,C37}为ST(21)的基集。
根据定理8.3.8的证明过程,可以得到3类区组。

第一类区组有7个:
{ C 11 , C 21 , C 31 } { C 12 , C 22 , C 32 } . . . { C 1 i , C 2 i , C 3 i } \{C_{11},C_{21},C_{31}\}\\ \{C_{12},C_{22},C_{32}\}\\ ...\\ \{C_{1i},C_{2i},C_{3i}\}\\ {C11,C21,C31}{C12,C22,C32}...{C1i,C2i,C3i}
其中i就是v2的基集元素,这里i最大为7。

第二类区组有3*7=21个
{ C 11 , C 12 , C 13 } { C 11 , C 14 , C 15 } . . . { C 21 , C 22 , C 23 } { C 21 , C 24 , C 25 } . . . { C 31 , C 32 , C 33 } { C 31 , C 34 , C 35 } . . . \{C_{11},C_{12},C_{13}\}\\ \{C_{11},C_{14},C_{15}\}\\ ...\\ \{C_{21},C_{22},C_{23}\}\\ \{C_{21},C_{24},C_{25}\}\\ ...\\ \{C_{31},C_{32},C_{33}\}\\ \{C_{31},C_{34},C_{35}\}\\ ...\\ {C11,C12,C13}{C11,C14,C15}...{C21,C22,C23}{C21,C24,C25}...{C31,C32,C33}{C31,C34,C35}...
这里的通项就是 { C i r , C j s , C k t } \{C_{ir},C_{js},C_{kt}\} {Cir,Cjs,Ckt}其中i=j=k都是v1的基集元素,这里就是1,2,3。(r,s,t)则为v2的一个区组,这里就是{1,2,3},{1,4,5}等等。

第三类区组有327=42个
其中前面i,j,k分别是v1基集的全排列,这里指的是123的全排列有6种,每一种则搭配v2的7个区组,共计42个。

因此,有7+21+42=70个。

与之类似的是构造ST(27),另外,ST(9), ST(13),ST(15)等则只能使用独特的构造方法进行构造。

3.2 若n为奇数,证明必存在一对正交的n阶拉丁方

证明存在一对正交拉丁方则需要根据定理8.2.2和定理8.2.3获得。而且最为重要的一点是,要知道一个整数可以被分解为素数幂乘积来表示。

1)当n=1时,显然命题是成立的。
2)当 n ≥ 3 n\ge3 n3时,n可以做如下表示:
n = p 1 α 1 p 2 α 2 . . . p N α N n=p_1^{\alpha1}p_2^{\alpha2}...p_N^{\alpha N} n=p1α1p2α2...pNαN
n 1 = p 1 α 1 n_1=p_1^{\alpha1} n1=p1α1,以此类推。
则由定理8.2.2可得
对于 n 1 = p 1 α 1 n_1=p_1^{\alpha1} n1=p1α1来说,存在 n 1 − 1 n_1-1 n11个相互正交的 n 1 n_1 n1阶拉丁方

对于 n N = p N α N n_N=p_N^{\alpha N} nN=pNαN来说,存在 n N − 1 n_N-1 nN1个相互正交的 n N n_N nN阶拉丁方
因此,令 k = m i n { n 1 , n 2 , . . . , n N } − 1 ≥ 2 k=min\{n_1,n_2,...,n_N\}-1\ge2 k=min{n1,n2,...,nN}12
由定理8.2.3可知,一定能构造至少k个n阶正交拉丁方。

综上所述,得证。

另一个比较像的题目是若n能被4整除,则必存在一对正交的n阶拉丁方。
解题思路也类似,只需要令 p 1 = 2 , α 1 ≥ 2 p_1=2,\alpha_1\ge2 p1=2,α12即可得证。

4.小结

本节我们主要介绍了拉丁方与H矩阵的相关题目解答,尤其是拉丁方的答案,全网很难搜到,自己整理并推理得出,完全原创。解题的关键还是在于灵活运用定理及其证明过程。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI让世界更懂你

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值