机器学习习题(18)

本文介绍了Word2Vec的工作原理及其在中文同义词替换中的应用,强调了它并非获取语义上的同义词,而是基于上下文统计。同时,讨论了SVM在二类分类中的决策边界,指出支持向量对决策边界的影响,并分析了不同情况下决策边界的变动。此外,还探讨了SVM的泛化误差、时间复杂度、效率和核函数选择对其性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、中文同义词替换时,常用到Word2Vec,以下说法错误的是
A. Word2Vec基于概率统计
B. Word2Vec结果符合当前语料环境
C. Word2Vec得到的都是语义上的同义词
D. Word2Vec受限于训练语料的数量和质量

参考答案:C

解析:Word2Vec是常用的词向量表示,它采用的是同等上下文环境下的词语具有相同的词向量,而并非相同的含义。例如,我使用和朋友聊天。我使用<微信>和朋友聊天。这两句话只要上下文一样,那么QQ和微信的词向量表示也相同。当然也有我爱<中国>和我爱<中华人民共和国>这两个词在语义上的表示是相同的。

2、假定你用一个线性SVM分类器求解二类分类问题,如下图所示,这些用红色圆圈起来的点表示支持向量
在这里插入图片描述
如果移除这些圈起来的数据,决策边界(即分离超平面)是否会发生改变?
A. 会
B. 不会

参考答案:A

解析:SVM的决策边界取决于支持向量,支持向量发生改变,其决策边界也会发生改变。

3、如果将数据中除圈起来的三个点以外的其他数据全部移除࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI让世界更懂你

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值