TopK问题-优先队列和基于partition减治、自己实现堆调整3种方法

本文介绍了三种解决TopK问题的方法:1) 使用优先队列(小根堆),通过不断调整堆保持堆顶元素为第K大;2) 基于快速排序的partition思想,降序排列后找到第K大元素;3) 自己实现堆调整,减少不必要的操作。代码示例分别对应LeetCode 215和牛客NC88题目。
摘要由CSDN通过智能技术生成

牛客NC88-寻找第K大
Leetcode 215-数组中第K个最大元素
在这里插入图片描述
1. 思路1:求第k大,维护一个小根堆,用优先队列priority_queue

  • 过程:向小根堆中插入k个数,遍历剩下的n-k个数,当前数比堆顶大时,交换他们的值。
  • 这样遍历完,堆顶是小根堆k个数中最小的,且比剩余的n-k的数都大,因此堆顶即为所求;此外,小根堆中所有的数是整个数组的前k大,堆顶就是第k大

代码如下(Leetcode 215):

class Solution {
   
public:
    int findKthLargest(vector<int>& nums, int k) {
   
        priority_queue<int,vector<int>,greater<int>> q;
        int i=0;
        for(;i<k;i++)
            q.push(nums[i]);
        for(;i<nums.size();i++)
            if(nums[i]>q.top()){
   
                q.pop();
                q.push(nums[i]);
            }
        return q.top();
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值