肥猫的游戏

题目描述

  野猫与胖子,合起来简称肥猫,是一个班的同学,他们也都是数学高手,所以经常在一起讨论数学问题也就不足为奇了。一次,野猫遇到了一道有趣的几何游戏题目,便拿给胖子看。游戏要求在一个有n个顶点凸多边形上进行,这个凸多边形的n-3条对角线将多边形分成n-2个三角形,这n-3条对角线在多边形的顶点相交。三角形中的一个被染成黑色,其余是白色。双方轮流进行游戏,当轮到一方时,他必须沿着画好的对角线,从多边形上切下一个三角形。切下黑色三角形的一方获胜。胖子一看觉得确实很有趣,不如就一起玩玩吧。假设游戏由野猫先开始,那么野猫是否有必胜的策略呢?请写一个程序帮助野猫算一算。

输入数据

  第一行为一个整数 n (4≤ n< 5× 104) ,表示多边形的顶点数,多边形的顶点由 0 至 n-1 顺时针标号。接着的 n−2 行描述组成多边形的三角形。第 i+1 行 (1≤ i≤ n−2) 有三个空格分隔的非负整数a、b、c,它们是第 i 个三角形的顶点编号。第一个给出的三角形是黑色的。

输出数据

  只有一行,倘若野猫有必胜策略,输出JMcat Win;否则,输出 PZ Win 。(注意大小写和空格)

样例输入
6
0 1 2
2 4 3
4 2 0
0 5 4
样例输出
JMcat Win
样例说明
如果连接一个多边形中任意两点的线段都完全包含于这个多边形,则称这个多边形为凸多边形。
问题分析

在这里插入图片描述
  1. 当黑色三角形和1个三角形相邻时,JMcat就可以直接切下黑色三角形,“JMcat Win”
  2. 当黑色三角形和2个三角形相邻时,在最优策略下,两个人都不会去切挨着黑色三角形的两个邻居,因为这样自己必输,所以,当就剩下这3个三角形的时候
    1)如果倒数第3个是由PZ切的,则就剩下两个三角形(1黑1白),此时"JMcat Win",而且此时的(n-2)是偶数即(n-2)%2=0
    2)如果倒数第3个是由JMcat切的,则就剩下两个三角形(1黑1白),此时"PZ Win",而且此时的(n-2-1)是偶数,(n-2)是奇数即(n-2)%2=1;

n赢家
5PZ Win
6JMcat Win
7PZ Win

  3. 当黑色三角形和3个三角形相邻的时候,我们模拟切一下,如果两人都按照最优方案切,就会像第二步一样,剩下了3个三角形(1黑2白)
    1)如果倒数第3个是由PZ切的,则就剩下两个三角形(1黑1白),此时"JMcat Win",而且此时的(n-2)是偶数即(n-2)%2=0
    2)如果倒数第3个是由JMcat切的,则就剩下两个三角形(1黑1白),此时"PZ Win",而且此时的(n-2-1)是偶数,(n-2)是奇数即(n-2)%2=1;
  所以,第3和第2步其实是一样的

n赢家
6JMcat Win
7PZ Win
8JMcat Win
总体思路
  • 当为第1种情况时 JMcat Win
  • 当为第2、3种情况时:
if n%2==1print("PZ Win");
if n%2==0:
	print("JMcat Win");
实验代码
if __name__ == '__main__':
    num = int(input())
    dict = {}
    array = [0]*num
    for i in range(num-2):
        dict[i] = list(map(int, input().split()))
    # 黑色三角形的三个顶点
    array[dict[0][0]] = 1
    array[dict[0][1]] = 1
    array[dict[0][2]] = 1
    geshu = 0
    for i in range(1,num-2):
        temp = 0
        for j in range(3):
            temp = temp+array[dict[i][j]];
        # 两点连成一条边
        if temp == 2:
            geshu = geshu + 1
    # 黑色三角形与几个三角形相邻
    if geshu == 1:
        print("JMcat Win")
    elif geshu == 2:
        if num%2 == 1:
            print("PZ Win")
        else:
            print("JMcat Win")
    else:
        if num % 2 == 1:
            print("PZ Win")
        else:
            print("JMcat Win")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还能坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值