题目描述
野猫与胖子,合起来简称肥猫,是一个班的同学,他们也都是数学高手,所以经常在一起讨论数学问题也就不足为奇了。一次,野猫遇到了一道有趣的几何游戏题目,便拿给胖子看。游戏要求在一个有n个顶点凸多边形上进行,这个凸多边形的n-3条对角线将多边形分成n-2个三角形,这n-3条对角线在多边形的顶点相交。三角形中的一个被染成黑色,其余是白色。双方轮流进行游戏,当轮到一方时,他必须沿着画好的对角线,从多边形上切下一个三角形。切下黑色三角形的一方获胜。胖子一看觉得确实很有趣,不如就一起玩玩吧。假设游戏由野猫先开始,那么野猫是否有必胜的策略呢?请写一个程序帮助野猫算一算。
输入数据
第一行为一个整数 n (4≤ n< 5× 104) ,表示多边形的顶点数,多边形的顶点由 0 至 n-1 顺时针标号。接着的 n−2 行描述组成多边形的三角形。第 i+1 行 (1≤ i≤ n−2) 有三个空格分隔的非负整数a、b、c,它们是第 i 个三角形的顶点编号。第一个给出的三角形是黑色的。
输出数据
只有一行,倘若野猫有必胜策略,输出JMcat Win;否则,输出 PZ Win 。(注意大小写和空格)
样例输入
6
0 1 2
2 4 3
4 2 0
0 5 4
样例输出
JMcat Win
样例说明
如果连接一个多边形中任意两点的线段都完全包含于这个多边形,则称这个多边形为凸多边形。
问题分析
1. 当黑色三角形和1个三角形相邻时,JMcat就可以直接切下黑色三角形,“JMcat Win”
2. 当黑色三角形和2个三角形相邻时,在最优策略下,两个人都不会去切挨着黑色三角形的两个邻居,因为这样自己必输,所以,当就剩下这3个三角形的时候
1)如果倒数第3个是由PZ切的,则就剩下两个三角形(1黑1白),此时"JMcat Win",而且此时的(n-2)是偶数即(n-2)%2=0
2)如果倒数第3个是由JMcat切的,则就剩下两个三角形(1黑1白),此时"PZ Win",而且此时的(n-2-1)是偶数,(n-2)是奇数即(n-2)%2=1;
n | 赢家 |
---|---|
5 | PZ Win |
6 | JMcat Win |
7 | PZ Win |
3. 当黑色三角形和3个三角形相邻的时候,我们模拟切一下,如果两人都按照最优方案切,就会像第二步一样,剩下了3个三角形(1黑2白)
1)如果倒数第3个是由PZ切的,则就剩下两个三角形(1黑1白),此时"JMcat Win",而且此时的(n-2)是偶数即(n-2)%2=0
2)如果倒数第3个是由JMcat切的,则就剩下两个三角形(1黑1白),此时"PZ Win",而且此时的(n-2-1)是偶数,(n-2)是奇数即(n-2)%2=1;
所以,第3和第2步其实是一样的
n | 赢家 |
---|---|
6 | JMcat Win |
7 | PZ Win |
8 | JMcat Win |
总体思路
- 当为第1种情况时 JMcat Win
- 当为第2、3种情况时:
if n%2==1:
print("PZ Win");
if n%2==0:
print("JMcat Win");
实验代码
if __name__ == '__main__':
num = int(input())
dict = {}
array = [0]*num
for i in range(num-2):
dict[i] = list(map(int, input().split()))
# 黑色三角形的三个顶点
array[dict[0][0]] = 1
array[dict[0][1]] = 1
array[dict[0][2]] = 1
geshu = 0
for i in range(1,num-2):
temp = 0
for j in range(3):
temp = temp+array[dict[i][j]];
# 两点连成一条边
if temp == 2:
geshu = geshu + 1
# 黑色三角形与几个三角形相邻
if geshu == 1:
print("JMcat Win")
elif geshu == 2:
if num%2 == 1:
print("PZ Win")
else:
print("JMcat Win")
else:
if num % 2 == 1:
print("PZ Win")
else:
print("JMcat Win")