pytorch函数之torch.nn.Linear

1、函数介绍

class torch.nn.Linear(in_features,out_features,bias = True

1.1 作用

对传入数据应用线性变换:y = A x+ b

1.2 参数

  • in_features - 每个输入样本的大小
  • out_features - 每个输出样本的大小
  • bias - 如果设置为False,则图层不会学习附加偏差。默认值:True

1.3 举例

m = nn.Linear(20, 30)
input = autograd.Variable(torch.randn(128, 20))
output = m(input)
print(output.size())	# torch.Size([128, 30])

分析:output.size()=矩阵size(128,20)*矩阵size(20,30)=(128,30)

torch.nn.Linear函数PyTorch中的一个线性变换函数。它接受三个参数:in_features表示输入的特征数,out_features表示输出的特征数,bias是一个布尔值,表示是否使用偏置项。该函数将输入特征与权重矩阵相乘,并可选择是否加上偏置项,从而进行线性变换。 在nn.Linear函数中,权重矩阵的形状是(out_features, in_features),而输入特征的形状是(batch_size, in_features)。当输入特征与权重矩阵相乘时,可以使用torch.t对nn.Linear的权重矩阵进行转置,以便进行矩阵乘法操作。这样得到的输出维度将是(batch_size, out_features)。torch.mm函数可以用来执行矩阵相乘的操作。 因此,torch.nn.Linear函数可以用来构建神经网络的全连接层,将输入特征与权重矩阵相乘,并添加偏置项,得到线性变换后的输出。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [torch.nn.Linear()函数](https://blog.csdn.net/qq_35037684/article/details/121624295)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [【Pytorch基础】torch.nn.Linear()函数](https://blog.csdn.net/zfhsfdhdfajhsr/article/details/115228920)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值