- 博客(39)
- 收藏
- 关注
原创 通信领域基础概念学习
基础概念带宽、宽带、网速、流量、频率、频谱、频段的定义带宽(Mbps、M、Mb/s)宽带网速(B/s,KB/s,MB/s)网速、带宽、宽带的区别带宽、宽带、网速、流量、频率、频谱、频段的定义带宽(Mbps、M、Mb/s)学术定义:一个信号所包含谐波的最高频率和最低频率之差,即信号所拥有的频率范围,定义为信号的带宽,比如电话信号带宽是3.1kHz(从300Hz到3.4kHz)在通信中,带宽通常用来表示从一点到另一点网络通信可达到的"最高速率",或者通俗地说就是最高网速是多少或者每秒钟可传输的最大数据量
2021-09-28 18:24:34 9208 3
原创 如何估算一个项目的成本:CAPEX与OPEX的区别
企业有各种各样的费用,从他们为工厂或办公室支付的租金到产品的原材料成本,再到他们支付给工人的工资,再到发展业务的总成本。 为了简化所有这些成本,企业将它们归入不同的类别。 最常见的两个是资本支出 (CAPEX) 和运营费用 (OPEX)。CAPEX是指资本性支出,一般指资金或固定资产、无形资产(比如专利)、递延资产等资产的投入。此类资产在使用过程中会持续多个计费周期,需要在使用过程中将其资本化,并分期将成本转化为费用。如固定资产的折旧,无形资产和递延资产的摊销等。在企业的经营活动中,供长期使用的、其经济
2021-09-27 17:45:11 28964
原创 二分查找算法原理与Python实现
二分查找算法原理与Python实现二分查找的前提二分查找的原理Python实现需要注意的坑二分查找的前提要求查找的数据有序排列。二分查找的原理先以数据的最小值为下界,最大值为上界,将要查找的数与当前数据中间的数进行对比,如果大了,就以当前中间数为新的下界,重新计算中值后对比;如果小了,就以当前中间数为新的上界,重新计算中值后对比;直到找到该数。Python实现% 目的是查找目标数在数组中的位置def binary_search(num, item): % num是目标数组,item 是待查找的
2020-09-25 11:04:33 734
原创 《数据结构与算法—Python语言实现》阅读笔记
for循环 Python的for循环语法如下:for element in iterable: 其中的iterable必须是可迭代的对象,比如常见的列表、字符串、元组、字典的键等,以及生成器、迭代器等。迭代器 一般说到迭代,我们都会想到for循环语法:for element in iterable: 实际上,for语法的原理就来自于迭代器。 所谓迭代器其实很简单,只要掌握两个函数:iter()和next()即可。 如果某个对象obj是可迭代对象(比如常见的列表、字符串、元组
2020-05-15 09:57:35 642
原创 A Survey on Deep Learning for Neuroimaging-based Brain Disorder Analysis阅读笔记
摘要,本文工作 深度学习最近已用于分析神经影像,例如结构磁共振成像(sMRI),功能性核磁共振成像(fMRI)和正电子发射断层扫描(PET)。并且在脑部疾病的计算机辅助诊断中,相对于传统的机器学习方法,其性能得到了显著改善。本文概述了深度学习方法在基于神经影像的脑部疾病分析中的应用。 通过介绍各种类型的深度神经网络和最新发展,我们首先提供深度学习技术和流行网络架构的全面概述。然后,我们回顾了用于四种典型脑部疾病的计算机辅助分析的深度学习方法,包括阿尔茨海默氏病,帕金森氏病,自闭症谱系障碍和精神分
2020-05-14 11:41:54 755
原创 FCN全卷积网络的理解
CNN与FCN的区别 CNN一般会在网络的最后设置一些全连接层,将卷积层得到的特征图映射成一个固定长度的特征向量,再通过Softmax等激活函数得到输入图像属于某一类的概率。它适用于图像级的分类和回归任务,确定整幅图像属于哪一类别。 而FCN则将这些全连接层全部替换成卷积层,其网络全部由卷积层组成,相当于对图像进行像素级分类,从而解决了定义在语义级别上的图像分割问题。FCN的特点 和CNN一样,随着卷积层和池化层的不断作用,输出特征图的尺寸会越来越小,FCN采用反卷积层(转置卷积)对最后一个卷
2020-05-13 19:57:18 506
原创 ResNet与DenseNet
ResNet可参考来聊聊ResNet及其变种【1】ResNet的一个重要设计原则是:当feature map大小降低一半时,feature map的数量增加一倍,这保持了网络层的复杂度。【2】Resnet的核心思想就是更改了网络结构的学习目的,原本学习的是直接通过卷积得到的图像特征H(X),现在学习的是图像与特征的残差H(X)-X,这样更改的原因是因为学习残差相比原始特征的直接学习更加容易。 上图说明了ResNet残差块与普通CNN的区别,图的左侧为普通的两层CNN,右侧为ResNet的残差块,
2020-05-12 20:50:39 1013
原创 期刊论文的图表工作
期刊论文的图表工作图表要求解读图表绘制工具配色方面 内容参考总结自那些高Bigger的SCI论文配图是怎么做出来的。曾经有位论文审稿人在自己的博文中就写道:“我审稿时看稿件的顺序是题目、摘要、图表、前言、参考文献和正文”。可见论文中图片的质量是非常重要的,处理一张图可能会花费大量的时间,图片质量的好坏一定程度上决定了论文能否被录用。图表要求解读 图表绘制工具配色方面 【1】Pl...
2020-04-14 00:02:46 807
原创 《像计算机科学家一样思考Python》学习笔记
第四章1、封装(encapsulation):指的就是把一段代码用函数包裹起来(有无形参均可),好处除了给这段代码一个名称以增加可读性之外,还有就是需要重复使用这段代码时,调用一次函数比辅助粘贴这段代码要快得多。2、泛化(generalization):听起来很玄,实际上就是重新定义一个已有的函数,给它多加几个形参。如下所示:def square(t):....对它进行泛化(重新定义、...
2020-04-04 16:51:52 652
原创 Semi-supervised Learning for Few-shot Image-to-Image Translation,CVPR2020
由于博主主要研究成对的图像到图像翻译,这篇博客主要是记录一下对这篇论文所提到的不配对图像翻译+few-shot+半监督场景的理解。 整理如下:【1】图像到图像翻译场景下的“标记图像”和分类场景下一样理解,即图像的类别,比如猫到狗的翻译,有猫、狗标签的就是标记图像。【2】论文提到的成对图像到图像翻译参考文献:8、15、1、18、25【3】few-shot在此并不是小样本的意思,而是测试...
2020-04-03 14:41:16 1408
原创 Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks论文解读
Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks摘要介绍方法模型结构损失函数训练流程 本文出自MICCAI2019。摘要 随着深度学习在医学图像分析任务中显示出前所未有的成功,缺乏足够的医学数据正成为一个关键问题。近年来,利用生成对抗网络(GAN)解决有限数据问题的尝试在生成具有多...
2019-12-25 19:53:10 1063
原创 GAN在医学图像综述——Generative adversarial network in medical imaging: A review
Generative adversarial network in medical imaging: A review介绍医学图像的应用重建医学图像合成无条件图像合成跨模态图像合成其他有条件合成工作医学图像公开数据集医学图像定量评估指标未来工作与展望 这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合...
2019-12-19 18:10:11 6609 4
原创 Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks—论文解读
Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks文章概述及亮点摘要介绍方法文章概述及亮点【1】multi-contrast如何理解【2】registered multi-contrast images和unregistered images如何理解,理解成配准的图像和未...
2019-12-12 20:41:54 1982
原创 深度学习网络设计原则
深度学习网络设计原则输出特征图的大小逐渐减小在网络较深层应该利用更多的feature map 翻译及理解自论文Rethinking the Inception Architecture for Computer Vision。以下原则是经验原则,即不一定适用于所有情况,需要根据具体场景再自行决定。输出特征图的大小逐渐减小 避免表达瓶颈,特别是在网络前面的层中。前馈网络可以用从输入层到分类...
2019-12-11 16:36:50 1183
原创 U-Net,从2D到3D,以及各种变体总结
U-Net,从2D到3D,以及各种变体总结原始U-Net3D U-Net网络结构数据方面原始U-Net 由一个收缩路径和一个扩张路径组成。收缩路径遵循了经典的CNN结构,每个分辨率层由两个3x3的卷积层+ReLU+以2为步长的最大池化组成。收缩路径一共有4个分辨率层,在每一个分辨率层都将特征图的数量进行加倍(通过设置卷积核的数量)。扩张路径也有4个分辨率层,每个层先进行以2为步长的上采样或...
2019-12-10 23:00:28 3069
原创 Python小tips和学习整理
Python小tips和学习整理在类中单下划线_或双下划线开头的函数和变量的意义getattr()函数和与之相关的函数hasattr(object, name)getattr(object, name, default)setattr(object, name, default)delattr(object,'name')在类中单下划线_或双下划线开头的函数和变量的意义 Python在类中的...
2019-12-09 17:03:00 431
原创 MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net for Multi-modal Alzheimer’s Classification论文解读
MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net for Multi-modal Alzheimer’s Classification摘要方法数据集预处理网络结构实验分类实验 这篇文章发表于2018年的International Workshop on Simulation and Synthesis in Medical Imaging...
2019-12-05 19:21:13 785 2
原创 H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes论文亮点摘要介绍方法用于切片间特征提取的深度2D DenseUNet用于混合特征探索的H-DenseUNet损失函数、训练过程与测试过程实验与结果 这篇论文发表于2018年的IEEE Transactions on...
2019-12-05 14:42:26 1658
原创 Few-Shot Unsupervised Image-to-Image Translation——ICCV2019论文解读
无监督的图像到图像翻译指的就是非配对的图像到图像的翻译。尽管它取得了一些成就,但是现在的方法需要在训练的时候用源域和目标域的图像一同训练,在这篇文章中,作者提出了一种基于小样本的无监督图像到图像翻译模型,并且关键的是,在模型的训练中,没有添加目标域的图像进行训练。 作者的框架基于GAN,称之为FUNIT模型。并且证明了小样本学习能力,另外,作者还将提出的模型用于小样本分类任务。通过在我们的...
2019-11-26 22:58:56 541
原创 统计深度学习与最优传输理论,传统方法vs深度学习,符号主义与联结主义
统计深度学习与最优传输理论,传统方法vs深度学习,符号主义与联结主义统计深度学习与最优传输理论传统计算机视觉方法与基于统计的深度学习方法符号主义与联结主义 本文多处摘引自当深度学习遇到3D,并记录一些自己的理解。统计深度学习与最优传输理论 统计深度学习的理论框架可以用范畴语言来描述,范畴包括 流形上的概率分布和流形间的变换。数据集是流形上的概率分布,深度神经网络表达流形间的变换。生成模型...
2019-11-26 10:41:23 2461
原创 PyTorch内部机制的理解
PyTorch内部机制的理解反向传播与参数更新的理解计算图的概念网络中间变量的梯度detach()的理解requires_grad和volatile的理解反向传播与参数更新的理解 首先,反向传播或许被称为“反向求导”更加合适,因为它只是个求导的过程,即计算中间参数的梯度。在PyTorch中,通过loss.backward()进行反向求导,关于loss.backward()有两点需要注意:【1...
2019-11-21 10:14:07 1307
原创 卷积神经网络的特征图可视化秘籍——PyTorch实现
卷积神经网络的特征图可视化秘籍——PyTorch实现可视化的定义及步骤PyTorch实现以预训练好的VGG16为例进行可视化关键代码剖析如果是自行搭建的网络,如何索引网络层?继续使用序号索引不使用序号,直接索引模型内部网络层的属性可视化的定义及步骤 这里所说的可视化是指对卷积神经网络中间层的输出特征图进行可视化,比如将网络第八层的输出特征图保存为图像显示出来。那么,我们实际上要做的事情非常简...
2019-11-19 16:03:59 11739 6
原创 PyTorch一些有趣而又实用的小操作
PyTorch有趣而又实用的小操作如何取出高维张量中满足一定条件的值(比如大于0.5),其余设为零?解决方案一,张量花式索引解决方案二,torch.where()的API如何取出高维张量中满足一定条件的值(比如大于0.5),其余设为零?解决方案一,张量花式索引 代码如下:a = t.randn([2,3])print(a)a[a<0.5] = 0print(a) 结果:...
2019-11-19 15:20:55 325
原创 Git的小白进阶之路
Git的小白进阶之路为什么需要Git?Git原理示意图Git的安装为什么需要Git? Git是一个高效的项目版本管理软件,什么叫项目版本管理软件呢?就是能自动记录每次文件的改动、对改动做出说明、还能让别人协作编辑,如图所示:图片及介绍引自廖雪峰的Git简介。Git原理示意图上图出自Git安装配置教程。简单来说,通过Git,开发者A\B\X都可以对同一个项目进行编辑和上传,并且注明自...
2019-11-18 11:26:17 147
原创 图像复原的损失函数总结——Loss Functions for Image Restoration with Neural Networks论文阅读
Loss Functions for Image Restoration with Neural Networks摘要损失函数L1 LossSSIM LossMS-SSIM Loss最好的选择:MS-SSIM + L1 Loss结果讨论损失函数的收敛性SSIM和MS-SSIM的表现该论文发表于 IEEE Transactions on Computational Imaging 2016,点击论...
2019-11-13 20:49:08 19792 11
原创 图像生成领域的GAN论文解读
图像生成领域的GANQuality Aware Generative Adversarial Networks(QAGAN),NeurIPS 2019Quality Aware Generative Adversarial Networks(QAGAN),NeurIPS 2019 尽管已有许多的方法试图提升GAN生成结果的视觉质量,然而,尚未有应用图像质量指标作为GAN的损失函数或是权重正则...
2019-11-12 19:30:11 2621
原创 PSNR与SSIM对于彩色图像和灰度图像的计算区别
具体公式可以参考图像质量评价指标之PSNR和SSIM 对于灰度图像来说,它只有单通道,那么PSNR的计算流程为计算处理后图像每一个像素与真实图像对应像素的差距,随后求平均。SSIM则是每次计算都从图像上(处理图像与真实图像)取一个NxN的窗口,然后不断滑动窗口进行计算,最后取平均值作为全局的SSIM。 对于彩色图像来说,一般由三通道组成,我们以RGB图像为例。一般对于它的质量指标计算有...
2019-11-11 17:30:48 9410 2
原创 CollaGAN: Collaborative GAN for Missing Image Data Imputation——CVPR2019论文详解
CollaGAN: Collaborative GAN for Missing Image Data Imputation摘要介绍相关工作生成对抗网络GAN图像到图像的翻译理论使用多种输入多种循环一致性损失摘要 在许多需要多种输入来得到一个期望输出的应用中,如果有一种输入数据缺失,通常会引入很大的偏差。尽管许多技术已经被用于插补缺失数据,图像插补仍然非常困难,由于自然图像的复杂属性。为了解决...
2019-11-11 16:17:29 1421
原创 SinGAN: Learning a Generative Model from a Single Natural Image——ICCV2019最佳论文详解
SinGAN:Learning a Generative Model from a Single Natural Image论文亮点研究背景研究方法与意义方法细节多尺度结构训练对抗损失重建损失实验与结果应用场景超分辨率剪切画到图像的翻译目标融合图像编辑论文亮点其训练样本是单张自然图像,而不是一个训练图像集。研究背景 生成对抗网络已经在建模视觉数据的高维分布上取得了引人注目的进展。特别...
2019-11-06 22:54:42 1213 1
原创 Overlapping patches理解——深度学习基本概念
Overlapping patches从中文角度直译成“部分重叠的图像块”,Patch的概念就好比对于一张100 x 100大小的图像来说,其中一个30 x 30的局部就能称为图像的一个Patch。所谓的Overlapping(部分重叠)可以用下图来解释: 即两个Patch之间重叠的部分构成的一个新的Patch,就称之为“Overlapping Patches”。...
2019-11-06 11:29:51 5483 2
原创 Image Style Transfer Using Convolutional Neural Networks——风格迁移经典论文阅读
Image Style Transfer Using Convolutional Neural Networks论文亮点研究背景研究方法与意义方法细节内容表示与内容损失风格表示与风格损失风格迁移实验设置与结果讨论内容和风格损失函数项的权重Trade-off卷积神经网络不同层的影响待转换图像初始化方法的讨论作者给出的其他讨论论文亮点给出了内容损失(Content Loss,也被称为特征重建损失...
2019-11-05 15:02:59 993 1
原创 Pytorch查看网络可学习参数的秘籍
Pytorch作为当前风头正劲的深度学习框架,以强大的动态图机制笑傲江湖。Pytorch通过autograd构建了自动微分系统,并且基于autograd构建了nn神经网络模块,封装了卷积、池化、全连接等各种神经网络常见结构。 torch.nn的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层(layer),也可以表示一个包含很多层的神经网络。在实际运用中,我们通...
2019-11-02 17:44:53 995
原创 PyTorch的nn.Linear()详解
PyTorch的nn.Linear()是用于设置网络中的全连接层的,需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下: in_features指的是输入的二维张量的大小,即输入的[batch_size, size]中的size。 out_features指的是输出的二维张量的大小,即...
2019-11-02 17:10:06 451659 66
原创 Pytorch动态调整学习率的方法详解及示例
PyTorch动态调整学习率 在深度神经网络中,学习率是最重要的超参数之一。如何调整学习率是“炼丹玄学”中最重要的药方之一。作为当前最为流行的深度学习框架,PyTorch已经为我们封装好了一些在训练过程中动态调整学习率的方法,下面就让我们来看一下。torch.optim.lr_scheduler 在torch.optim.lr_scheduler上,基于当前epoch的数值,为我们封装了...
2019-10-29 21:30:36 31821 1
原创 Pytorch的nn.Conv2d()详解
Pytorch的nn.Conv2d()详解nn.Conv2d()的使用、形参与隐藏的权重参数in_channelsout_channelskernel_sizestride = 1padding = 0dilation = 1groups = 1bias = Truepadding_mode = 'zeros'nn.Conv2d()的使用、形参与隐藏的权重参数 二维卷积应该是最常用的卷积方式...
2019-10-19 22:13:29 212530 29
原创 torchvision中给出的归一化方法transforms.Normalize()的形参理解与坑
在PyTorch团队专门开发的视觉工具包torchvision中,提供了常见的数据预处理操作,封装在transforms类中。transforms类涵盖了大量对Tensor和对PIL Image的处理操作,其中包含了对张量进行归一化的transforms.normalize()函数,它的形参包括mean、std等,其手册中对函数和源码的介绍如下图:需要注意的坑是:这里的mean和std并不...
2019-10-15 20:52:16 9083 5
原创 Opencv-python(cv2)改变图像尺寸的cv2.resize()函数
如何改变图像大小 在Opencv-python中,通过调用cv2.imresize()通过插值的方式来改变图像的尺寸,关于该函数的具体介绍,已经有非常多的博客进行了剖析,这里推荐一个Opencv的Resize函数解析。cv2.resize()的要点与坑cv2.resize()的形参要点 在cv2.imresize()函数中,主要用到的形参包括输入Mat数据,dsize:代表期望的输出...
2019-10-13 20:56:13 87149 10
原创 Opencv-python(cv2)图像读取、显示与保存,看这一篇就够了
Opencv-python(cv2)图像读取与显示,看这一篇就够了图像读取imread函数的坑图像显示imshow函数的坑读取与显示图像常见报错提示:图像读取opencv读取图像主要依赖于cv2.imread()函数,cv2.imread()的函数原型为Mat imread( const string& filename, int flags=1 ),其中Mat为Opencv最重要的数...
2019-10-13 17:30:03 45879 10
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人