视频人脸识别+识别同一个人的不同面部表情的差异

该博客探讨了在已识别人脸的基础上,如何计算同一个人不同面部表情之间的差异值。通过使用视频输入,获取每个人的无表情和微笑表情,然后将68个特征点转化为128维向量,并利用欧式距离计算差异。这种方法被应用于Person A和Person B的面部表情比较,以量化他们的表情变化幅度。
摘要由CSDN通过智能技术生成

在已经识别人脸的基础上,不同的人显示一样的动作的幅度是不同的。这个幅度是基于他们没有任何面部表情到展示一样的表情。这个幅度就是同一个人的两个不同面部表情的差异值。

参考:https://blog.csdn.net/hongbin_xu/article/details/78390982

输入:
来自一个人的两个面部表情的视频。
Person A: A_E0 (没有表情), A_E1(微笑)
Person B: B_E0 (没有表情), B_E1(微笑)

输出:
Person A: A_E0 和 A_E1 的 差异值
Person B: B_E0 和 B_E1 的 差异值

从视频中是别人脸。得到68个特征值。转换为128维向量空间。在之前的博客中有具体描述。

def getPersonData(vpath):
	# initialize dlib's face detector (HOG-based) and then create
	# the facial landmark predictor
	detector = dlib.get_frontal_face_detector()
	predictor_path = "68_face_landmark\shape_predictor_68_face_landmarks.dat"
	predictor = dlib.shape_predictor(predictor_path)
	recognizer_path = "dlib_face_recognition_resnet_model_v1\dlib_face_recognition_resnet_model_v1.dat"
	recognizer = dlib.face_recognition_model_v1(recognizer_path)

	desarray = np.zeros( (1,128) )

	print('Processing file:'+ vpath)
	cap = cv2.VideoCapture(vpath)

	<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值