2020.12.15

leetcode刷题 同时被 2 个专栏收录
3 篇文章 0 订阅
3 篇文章 0 订阅

2020.12.15

1.有向图判断是否有环

对于图类问题,首先利用邻接表对图进行表示,如图所示:通常使用List<List>的格式存储表示。img

在本题中,输入为[a,b]表示b指向a,所以邻接表生成代码为:

List<List<Integer>> edges = new ArrayList<List<Integer>>();        
for (int i = 0; i < numCourses; ++i) { // numCourses为节点个数
    edges.add(new ArrayList<Integer>());
}
for (int[] info : prerequisites) {
    edges.get(info[1]).add(info[0]);
}

思路一:拓扑排序(bfs)

通过拓扑排序生成的节点序列,可以确定是否存在环。

构建的邻接表就是我们通常认识的邻接表,每一个结点存放的是后继结点的集合。

该方法的每一步总是输出当前无前趋(即入度为零)的顶点。为避免每次选入度为 0 的顶点时扫描整个存储空间,可设置一个队列暂存所有入度为0的顶点。

具体做法如下:

1、在开始排序前,统计课程安排图中每个节点的入度,生成 入度表 ,将入度为 0 的顶点均入队列。

2、只要队列非空,就从队首取出入度为 0 的顶点,将这个顶点pre输出到结果集(在生成拓扑排序)中,并且将这个顶点的所有邻接点cur的入度减 1,在减 1 以后,发现这个邻接点的入度为 0 ,就继续入队。

最后检查结果集中的顶点个数是否和课程数相同即可。

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        int[] indegrees = new int[numCourses];
        List<List<Integer>> edges = new ArrayList<>();
        Queue<Integer> queue = new LinkedList<>();
        int valid = 0;
        for(int i = 0; i < numCourses; i++)
            edges.add(new ArrayList<>());
        // Get the indegree and adjacency of every course.
        for(int[] info : prerequisites) {
            indegrees[info[0]]++;
            edges.get(info[1]).add(info[0]);
        }
        // Get all the courses with the indegree of 0.
        for(int i = 0; i < numCourses; i++)
            if(indegrees[i] == 0) queue.add(i);
        // BFS TopSort.
        while(!queue.isEmpty()) {
            int pre = queue.poll();
            valid++;
            for(int cur : edges.get(pre))
                if(--indegrees[cur] == 0) queue.add(cur);
        }
        return numCourses == valid;
    }
}

思路二:dfs

class Solution {
    List<List<Integer>> edges;
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        edges = new ArrayList<>();
        boolean[] visited = new boolean[numCourses];
        boolean[] stack = new boolean[numCourses];
        for(int i = 0; i < numCourses; i++)
            edges.add(new ArrayList<>());
        for(int[] info : prerequisites) {
            edges.get(info[1]).add(info[0]);
        }
        for (int i=0;i<numCourses;i++) {
            if (!visited[i]) {
                if (dfs(visited,stack,i))
                    return false;
            }
        }
        return true;
    }

    public boolean dfs(boolean[] visited, boolean[] stack, int i) {
        visited[i] = true;
        stack[i] = true;
        for (int index : edges.get(i)) {
            if (visited[index] && stack[index]) return true;
            if (visited[index]) continue;
            if (dfs(visited, stack, index)) 
                return true;
        }
        stack[i] = false;
        return false;
    }
}

2.判断无向图是否有环

思路一:并查集

/**
 * 
 *利用并查集判断无向图中是否有环
 */
public class Solution {
	public int[] parent;//记录并查集元素父节点
	
	public int depth[];//记录并查集每个元素的深度
	//初始化操作
	public Solution(int nums) {
		this.parent = new int[nums];
		this.depth = new int[nums];
		for(int i = 0;i<nums;i++) {
			parent[i] = -1;
		}
		
	}
	public int find_root(int x) {//查找x的代表元素
		int root = x;
		while(parent[root]!=-1) {
		root = parent[root];
		}
		return root;
		
	}
	public boolean union(int x,int y) {
		int x_root = find_root(x);
		int y_root = find_root(y);
		if(x_root == y_root) {
			return false;//说明有环
		}else {
			if(depth[x_root]>depth[y_root]) {//如果x_root树更深,则把y_root加到x_root上
				parent[y_root] = x_root;
			}else if(depth[x_root]<depth[y_root]) {//如果y_root树更深,则把x_root加到y_root上
				parent[x_root] = y_root;
			}else if(depth[x_root] == depth[y_root]) {//相等的情况下,加到哪个都行,相应的数深+1
				parent[x_root] = y_root;
				depth[x_root]++;
			}
		}
		return true;
	}
	public static void main(String[] args) {
		int[][] rec = {//邻接矩阵
				{0,1,0,0,0},
				{1,0,1,0,1},
				{0,1,0,1,0},
				{0,0,1,0,0},
				{0,1,0,0,0}
		};
	Solution s = new Solution(5);
	for(int i = 0;i<rec.length;i++) {
		for(int j = 0;j<i;j++) {
			if(rec[i][j] == 1) {
				boolean b = s.union(i, j);
				if(b == false ) {
					System.out.println("有环");
					return;
				}
			}
		}
	}
	System.out.println("没有环");
	}
}
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值