统计
文章平均质量分 89
hflag168
一名老码农
展开
-
十六、 方差分析--使用Python进行双因素方差分析
双因素方差分析1. 双因素方差分析的理论2. 双因素方差分析的实现原创 2020-08-16 08:23:20 · 8831 阅读 · 9 评论 -
十四、非参数检验:使用python进行多总体的比较与检验
多样本问题是统计中最常见的一类问题. 例如多种投资方案在试行后效果的比较、不同机器在同一条件下的稳定性是否相同等等. 本节就多样本模型讨论位置参数与尺度参数的检验问题.1. 位置参数的Kruskal-Wallis秩和检验θi\theta_iθi为第i个样本的位置参数,假设检验的形式:H0:θ1=θ2=...=θkH1:θ1,θ2,...,θk不全相等H_0: \theta_1=\theta_2=...=\theta_k \quad H_1: \theta_1, \theta_2,...,\the原创 2020-07-17 20:33:40 · 1931 阅读 · 0 评论 -
十三、非参数检验:使用python进行两样本尺度参数的Mood检验
位置参数描述了总体的位置, 而描述总体概率分布离散程度的参数是尺度参数. 假定两独立样本X1,X2,...,XmX_1 ,X_2 , ... ,X_mX1,X2,...,Xm和Y1,Y2,...,YnY_1 ,Y_2 , ... ,Y_nY1,Y2,...,Yn分别来自N(µ1,σ12)N(µ_1 ,σ_1^2)N(µ1,σ12)和N(µ2,σ22)N(µ_2 ,σ_2^2)N(µ2,σ22) , 则检验H0:σ12=σ22H_0:\sigma_1^2=\sigma_2^2H0:σ12原创 2020-07-17 19:42:47 · 4702 阅读 · 0 评论 -
十二、非参数检验:使用python进行两样本Wilcoxon秩和检验法和Mann-Whitney U检验
除了使用Wilcoxon进行单样本位置检验外,其实也可以使用wilcoxon进行两样本位置检验,基本原理与单样本中心位置检验一样:将来组容量相等的样本值做差,然后分别计算差值中为负数的秩和(R−R^-R−)和为正的秩和(R+R^+R+), 接下来的处理于单样本一样就可以了。这里需要注意的是在python中使用Wilcoxon秩和检验对单样本和双样本时,对应参数的差异,函数原型如下:stats.wilcoxon(x, y=None, zero_method='wilcox', correction=Fals原创 2020-07-17 17:33:22 · 5453 阅读 · 1 评论 -
十一、非参数检验:使用python进行卡方两样本独立性检验
在单样本问题中, 人们想要检验的是总体的中心是否等于一个已知的值. 但在实际问题中, 更受注意的往往是比较两个总体的位置参数; 比如, 两种训练方法中哪一种更出成绩, 两种汽油中哪一种污染更少, 两种市场营销策略中哪种更有效等等.1. χ2\chi^2χ2独立性检验的原理若随机变量X,YX,YX,Y的分布函数分别为F1(x)和F2(y)F_1(x) 和 F_2(y)F1(x)和F2(y), 且联合分布为F(x,y)F(x, y)F(x,y), 则X与Y的独立性归结为假设检验问题:H0:F(x,y)原创 2020-07-16 23:16:02 · 2767 阅读 · 0 评论 -
十、非参数检验:使用python进行卡方拟合优度检验
在参数检验中都是假设总体服从正态分布,那么如何才能知道总体在理论上服从一个什么分布呢?卡方拟合优度检验就是用来检验总体是否服从某个指定分布。从而可以进行:检测观察数与理论数之间的一致性;通过检测观察数与理论数之间的一致性来判定事物之间的独立性。1. 卡方拟合优度检验的原理1.1. 假设检验的形式H0:总体服从某个分布H1:总体不服从某个分布H_0: 总体服从某个分布 \quad H_1: 总体不服从某个分布H0:总体服从某个分布H1:总体不服从某个分布1.2. 进行假设检验的步骤在原创 2020-07-15 23:01:56 · 7625 阅读 · 2 评论 -
九、非参数检验:使用python进行单总体位置参数的检验-符号秩检验
符号检验利用了观察值和原假设的中心位置之差的符号来进行检验,但是没有利用这些差值的大小所包含的信息。不同的符号代表了在中心位置的哪一边,而差的绝对值的秩的大小代表了距离中心的远近。1. 统计量秩1.1. 秩的概念简单来说,对一组有序的数,其中的每个元素都有一个顺序号,可以称为“秩次”。import numpy as npimport pandas as pdx=[-5,-3,-1,0,1,3,5]x=pd.Series(x)x.rank()# 结果# 1,2,3,4,5,6,7从上面原创 2020-07-12 13:03:43 · 1755 阅读 · 0 评论 -
八、非参数检验:使用python进行单总体位置参数的检验-符号检验
前面几讲中的参数检验都是基于这样一个假设:样本来自于正态分布的总体!那么如果总体不符合正态分布时,如何对其参数或者分布进行检验呢?这就涉及到非参数检验,我们首先从单个总体的位置参数和分布检验讲起。...原创 2020-07-11 13:05:41 · 2023 阅读 · 1 评论 -
七、假设检验:使用Python进行两个正态总体方差的假设检验
站位原创 2020-07-03 20:07:10 · 1576 阅读 · 1 评论 -
六、假设检验:使用Python进行两个正态总体均值的假设检验
站位原创 2020-07-03 20:05:01 · 2769 阅读 · 1 评论 -
五、假设检验:使用Python进行单个正态总体方差的假设检验
设总体X∼N(μ,σ2),μ,σ2X\sim N(\mu, \sigma^2), \mu, \sigma^2X∼N(μ,σ2),μ,σ2未知,X1,...,XnX_1,...,X_nX1,...,Xn是总体X的样本。则其检验统计量为:(n−1)S2σ2∼χ2(n−1)\frac{(n-1)S^2}{\sigma^2}\sim \chi^2 (n-1)σ2(n−1)S2∼χ2(n−1)方差的假设检验也可分为三类:双边检验,左侧检验和右侧检验。双边检验假设检验的形式:H0:σ2=σ02H1:σ2原创 2020-07-03 19:40:16 · 2006 阅读 · 1 评论 -
四、假设检验:使用Python进行单个正态总体均值的假设检验
假设检验是在已知总体分布某个参数的先验值后,通过抽样来对这个先验值进行验证是否接受的问题。判断的方法大致分为两类:临界值法和P值方法;相对来说p值法更方便计算机处理,因此下面的讨论都是基于p值法。总体均值的假设检验就是已知了一个均值的先验值,然后根据实验获取的数据对这个值进行验证是否接受它。根据是否已知总体的方差,又可细分为两种类型:方差已知和方差未知。1. 方差已知的在方差已知的情况下,检验统计量为:X‾−μ0σ/n∼N(0,1)\frac{\overline X - \mu_0}{\sigma/原创 2020-07-03 09:10:57 · 3635 阅读 · 3 评论 -
三、区间估计:使用Python进行两个正态总体参数的区间估计
设样本(X1,...,Xn1)(X_1, ..., X_{n1})(X1,...,Xn1)和(Y1,...,Yn2)(Y_1,...,Y_{n2})(Y1,...,Yn2)分别来自总体N(μ1,σ12)N(\mu_1, \sigma1^2)N(μ1,σ12)和N(μ2,σ22)N(\mu_2, \sigma_2^2)N(μ2,σ22),并且它们相互独立. 样本均值分别为X‾,Y‾\overline X, \overline YX,Y; 样本方差分别为S12,S22S_1^2, S_2^2S12原创 2020-07-01 17:04:36 · 1368 阅读 · 0 评论 -
二、区间估计:使用Python进行单个正态总体方差的区间估计
对单个正态总体方差区间估计可以分为两类:总体均值(μ\muμ)已知,和未知。总体均值未知枢轴量为 (n−1)S2σ2∼χ2(n−1)\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)σ2(n−1)S2∼χ2(n−1)则其置信度为1−α1-\alpha1−α的双侧置信区间为:((n−1)S2χα/22(n−1),(n−1)S2χ1−α/22(n−1))(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{原创 2020-06-30 17:21:49 · 2173 阅读 · 6 评论 -
一、区间估计:使用Python进行单个正态总体均值的区间估计
Python区间估计单个正态总体均值的区间估计单个正态总体的均值的区间估计可以分为两类:方差已知和方差未知。方差已知枢轴量为x‾−μσ/n∼N(0,1)\frac{\overline x - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)σ/nx−μ∼N(0,1)其置信水平为1−α1-\alpha1−α的双侧置信区间为:(x‾−σnZα2,x‾+σnZα2)(\overline x - \frac{\sigma}{\sqrt{n}}Z_{\frac{\alpha原创 2020-06-30 11:21:09 · 2932 阅读 · 1 评论