1. 引入
数是数学的一个最基本概念, 回顾一下我们曾经学习过的数的发展过程:
(1) 代数性质: 关于数的加, 减, 乘 , 除等运算的性质称为数的代数性质.
(2) 数集: 数的集合简称数集.
常见的数集: 复试C; 实数R;有理数Q等等. 它们有一个共同的性质就是对加减乘除运算封闭.
2. 数域的定义
设F
是由一些复数组成的集合, 其中包括0和1, 如果F
中任意两个数的和, 差, 积, 商(除数不为0)扔是F
中的数, 则称F
为一个数域.
从数域的定义可以看出一个数域要满足:
- 为复数的子集;
- 包含0和1;
- 对加减乘除运算封闭.
常见的数域: 复数域C, 实数域R, 有理数域Q. (自然数集合N和整数集合Z都不是数域.)
注意:
(1) 若数集F
中任意两个数作某种运算的结果仍在F
中, 则称数集F
对这个运算时封闭的.
(2) 数域的等价定义: 如果一个包含0, 1在内的数集F
对于加法, 减法, 乘法和除法(除数不能为0)都是封闭的, 则称数集F
为一个数域.
那么除了有理数域Q, 实数域R和复数域C外, 还有其他的数域吗? 当然有!
例 1. 证明: 数集
Q
(
2
)
=
{
a
+
b
2
∣
a
,
b
∈
Q
}
Q( \sqrt2)=\{a + b \sqrt2 | a, b \in Q\}
Q(2)={a+b2∣a,b∈Q}是一个数域.
证明:
(1)
{
a
+
b
2
∣
a
,
b
∈
Q
}
⊆
C
\{a+b\sqrt2| a, b\in Q\} \subseteq C
{a+b2∣a,b∈Q}⊆C
(2) 因为
0
=
0
+
0
2
,
1
=
1
+
0
2
0=0 +0\sqrt2, 1= 1+0\sqrt2
0=0+02,1=1+02, 所以
0
,
1
∈
Q
(
2
)
0, 1 \in Q(\sqrt2)
0,1∈Q(2)
(3) 设
a
,
b
,
c
,
d
∈
Q
a, b, c, d\in Q
a,b,c,d∈Q, 则有
x
±
y
=
(
a
±
c
)
+
(
b
±
d
)
2
∈
Q
(
2
)
,
x\pm y = (a\pm c) + (b\pm d)\sqrt2 \in Q(\sqrt2),
x±y=(a±c)+(b±d)2∈Q(2),
x
.
y
=
(
a
c
+
2
b
d
)
+
(
a
d
+
b
c
)
2
∈
Q
(
2
)
x.y =(ac+2bd) + (ad+bc)\sqrt2 \in Q(\sqrt2)
x.y=(ac+2bd)+(ad+bc)2∈Q(2)
设
a
+
b
2
≠
0
a+b\sqrt2 \ne 0
a+b2=0, 则有
a
−
b
2
≠
0
a-b\sqrt2 \ne 0
a−b2=0
( 否则, 若
a
−
b
2
=
0
a-b\sqrt2 =0
a−b2=0, 则
a
=
b
2
a=b\sqrt2
a=b2,
\quad
于是有
a
b
=
2
∈
Q
\frac{a}{b} =\sqrt2 \in Q
ba=2∈Q
\quad
或
a
=
0
,
b
=
0
⇒
a
+
b
2
=
0
a=0, b=0\Rightarrow a+b\sqrt2=0
a=0,b=0⇒a+b2=0 皆矛盾)
c + d 2 a + b 2 = ( c + d 2 ) ( a − b 2 ) ( a + b 2 ) ( a − b 2 ) = a c − 2 b d a 2 − 2 b 2 + a d − b c a 2 − 2 b 2 2 ∈ Q ( 2 ) \frac{c+d\sqrt2}{a+b\sqrt2}=\frac{(c+d\sqrt2)(a-b\sqrt2)}{(a+b\sqrt2)(a-b\sqrt2)}=\frac{ac-2bd}{a^2-2b^2}+\frac{ad-bc}{a^2-2b^2}\sqrt2\in Q(\sqrt2) a+b2c+d2=(a+b2)(a−b2)(c+d2)(a−b2)=a2−2b2ac−2bd+a2−2b2ad−bc2∈Q(2)
所以,
Q
(
2
)
Q(\sqrt2)
Q(2)为数域.
可以证明类似
{
a
+
b
p
∣
a
,
b
∈
Q
}
,
p
为
素
数
\{a+b\sqrt p|a,b\in Q\}, p为素数
{a+bp∣a,b∈Q},p为素数, 都为为数域, 所以数域有无穷多个.
例2: 设F
是至少含两个数的数集, 证明: 若F
中任意两个数的差与商(除数不为0)仍属于F
, 则F
为一个数域.
证明: 由题设任取
a
,
b
∈
F
a, b \in F
a,b∈F, 有
0
=
a
−
a
∈
F
,
1
=
b
b
∈
F
(
b
≠
0
)
0=a-a\in F, 1=\frac{b}{b}\in F(b\ne 0)
0=a−a∈F,1=bb∈F(b=0),
a
−
b
∈
F
,
a
b
∈
F
(
b
≠
0
)
a-b\in F, \frac{a}{b}\in F(b\ne 0)
a−b∈F,ba∈F(b=0),
a
+
b
=
a
−
(
0
−
b
)
∈
F
a+b = a-(0-b)\in F
a+b=a−(0−b)∈F,
b
≠
0
时
,
a
b
=
a
1
b
∈
F
,
b
=
0
时
,
a
b
=
0
∈
F
b \ne 0时, ab=\frac{a}{\frac{1}{b}}\in F, b=0时, ab=0\in F
b=0时,ab=b1a∈F,b=0时,ab=0∈F,
所以, F
是一个数域.
3. 数域的性质
性质1: 任意数域F
都包括有理数域Q. 即, 有理数域为最小数域.
证明:
设F
为任意一个数域. 由定义可知:
0
∈
F
,
1
∈
F
.
\quad 0\in F, 1\in F.
0∈F,1∈F.
于是有
∀
m
∈
Z
+
,
m
=
1
+
1
+
.
.
.
+
1
∈
F
\forall m \in Z^+, m = 1+1+...+1\in F
∀m∈Z+,m=1+1+...+1∈F
进而有
∀
m
,
n
∈
Z
+
,
m
n
∈
F
\quad \forall m, n\in Z^+, \frac{m}{n}\in F
∀m,n∈Z+,nm∈F,
−
m
n
=
0
−
m
n
∈
F
\quad -\frac{m}{n}=0-\frac{m}{n}\in F
−nm=0−nm∈F.
而任意一个有理数可表示为两个整数的商, 所以
Q
⊆
F
Q\subseteq F
Q⊆F