TensorFlow
文章平均质量分 92
深度学习框架TensorFlow学习笔记
Digger72
小垃圾在努力!
展开
-
Tensorflow——图像的语义分割
图像的语义分割图像的语义分割是计算机视觉中十分重要的领域。它是指像素级地识别图像,即标注出图像中每个像素所属的对象类别。原创 2020-12-30 17:25:21 · 3571 阅读 · 5 评论 -
TensorFlow——图像定位与分割
常见图像处理的任务分类(核心基础)分类+定位知道对象是什么,还要确定对象所处的位置。在对象附近画一个边框。语义分割对图像中的像素点进行分类,区分图像中每一个像素点。目标检测回答图片中有什么,在什么位置。用矩形框框住。实例分割目标检测与语义分割的结合。需要精确到物体的边缘。图像定位输出四个数字(x,y,w,h),图像中某一个点的坐标(x,y),以及图像的宽度和高度。Oxford-IIIT数据集...原创 2020-12-15 16:27:21 · 3174 阅读 · 1 评论 -
TensorFlow——模型保存
模型保存五种模型保存方法模型整体的保存模型框架的保存模型权重的保存使用回调函数对模型进行保存对自定义训练模型的保存一、模型整体的保存整个模型可以保存到一个文件中,其中包含权重值、模型配置乃至优化器配置。这样,可以为模型设置检查点,并稍后从完全相同的状态继续训练,而无需访问原始代码。在Keras中保存完全可以正常使用的模型非常有用,您可以在TensorFlow.js中加载它们,然后在网络浏览器中训练和运行它们。Keras使用HDF5标准提供基本的保存格式。保存模型# 保存模型,参数原创 2020-11-20 20:33:09 · 1155 阅读 · 0 评论 -
TensorFlow——多输出模型实例
多输出模型多输出模型指的是模型里边有多个输出。实例:将图像以颜色和服饰分类导入需要用的库import tensorflow as tffrom tensorflow import kerasimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport pathlibimport IPython.display as display根据图片路径提取图片# 图片存放地址data_dir = './原创 2020-11-19 16:47:56 · 2207 阅读 · 2 评论 -
TensorFlow——预训练网络
预训练网络(迁移学习)预训练网络是一个保存好之前已在大型数据集(大规模图像分类任务)上训练好的卷积神经网络。原始数据集足够大且足够通用,预训练网络学到的特征空间层次结构可以作为有效的提取视觉世界特征的模型。注: 即使新问题和新任务与原始任务完全不同,学习到的特征在不同问题之间是可以移植的,这也是深度学习与浅层学习方法的一个重要优势。它使得深度学习对于小数据问题非常的有效。ImgaeNetImageNet是一个手动标注好类别的图片数据库(为了机器视觉研究),目前已有2200个类别。深度学习中Ima原创 2020-11-18 14:55:59 · 698 阅读 · 0 评论 -
TensorFlow——自定义训练实例与数据增强
数据增强人为将图片进行一些变化从而产生新的图片。让网络不拘泥于定势,提高网络的鲁棒性。VGG全称是Visual Geometry Group,属于牛津大学科学工程系,其发布了一系列以VGG开头的卷积网络模型,可以用在人脸识别、图像分类等方面,分别从VGG16~VGG19自定义训练实例(VGG16)...原创 2020-11-17 16:50:13 · 380 阅读 · 0 评论 -
TensorFlow——TensorBoard可视化
TensorBoard是一款为了更方便TensorFlow程序的理解、调试与优化发布的可视化工具,可以用TensorBoard来展现你的TensorFlow图像,绘制图像生成的定量指标图以及附加数据。通过读取TensorFlow的事件文件来运行TensorFlow事件文件包括了你在运行中涉及到的主要数据主要内容通过tf.keras回调函数使用tensorboard认识tensorboard界面在tf.keras回调函数中记录自定义变量在自定义循环中使用tensorboard显示方式原创 2020-10-30 20:56:10 · 282 阅读 · 0 评论 -
TensorFlow——Eager模式
Eager模式简介eager模式是一个命令式编程环境,可以立即评估操作产生的结果,无需构建计算图。tensorflow的交互模式tensorflow2.0默认使用eager模式eager模式支持GPU加速和大多数tensorflow操作eager模式下tensorflow可与NumPy很好的协作tf.executing_eagerly() # 判断是否在eager模式下自然控制流-eager模式下使用Python控制流而不是图控制流,简化了动态模型的创建。张量(Tensor)张量原创 2020-10-29 20:24:53 · 1874 阅读 · 1 评论 -
TensorFlow——tf.keras高阶API实例
小tips:将文本与序号对应例:test = 'i am a student'# 元组推导式:生成器dict((word,test.split().index(word)) for word in test.split())输出:{‘i’: 0, ‘am’: 1, ‘a’: 2, ‘student’: 3}tf.keras序列问题实例:电影评论数据import tensorflow as tffrom tensorflow import kerasfrom tensorflow.ker原创 2020-10-27 20:59:43 · 405 阅读 · 0 评论 -
TensorFlow——批标准化
标准化传统机器学习中标准化也叫做归一化,一般是将数据映射到指定的范围,用于去除不同维度数据的量纲以及量纲单位。数据标准化让机器学习模型看到的不同样本彼此之间更加相似,有助于模型的学习与对新数据的泛化。常见的数据标准化形式标准化:减均值除方差—>均值为0,标准差为1归一化:(数据-最小值)/(最大值-最小值)批标准化不仅在将数据输入模型之前对数据做标准化。在网络的每一次变换之后都应该考虑数据标准化。结果:在训练过程中均值和方差随时间发生变化,可以适应性得将数据标准化。解决的问题:原创 2020-10-27 11:12:59 · 702 阅读 · 0 评论 -
TensorFlow综合实例——卫星图像识别(tf.data、卷积神经网络)
卫星图像识别实例数据预处理tf.data相关处理方法卷积神经网络(CNN)识别卫星图像中的飞机和湖泊,所以实际是个二分类问题。import tensorflow as tfprint('TensorFlow version:{}'.format(tf.__version__))import matplotlib.pyplot as plt%matplotlib inlineimport numpy as np# 面向对象路径管理工具import pathlib 路径处理dat原创 2020-10-25 21:14:14 · 1998 阅读 · 9 评论 -
Tensorflow——卷积神经网络(CNN)
卷积神经网络主要应用于计算机视觉相关任务,但它能处理的任务并不局限于图像,其实语音识别也是可以使用卷积神经网络。工作概述卷积层 conv2d参数:ksize 卷积核大小 strides 卷积核移动跨度 padding 边缘填充非线性层 relu/sigmiod/tanh池化(下采样)层 pooling2d最大池化2.平均池化全连接层 w*x+b输出卷积卷积是指将卷积应原创 2020-10-25 19:50:32 · 315 阅读 · 0 评论 -
Tensorflow——tf.data模块
tf.data-处理复杂输入tf.data.Dataset 表示一系列元素,每个元素中包含一个或多个Tensor对象,这些对象被称为组件。建立方式直接从Tensor创建Dataset例如:Dataset.from_tensor_slices()参数可以是Numpy、列表和TensorArray,会自动转换为Tensor通过对一个或多个tf.data.Dataset对象来使用变换来创建Dataset示例:tf.data输入模块实例...原创 2020-10-22 19:24:41 · 239 阅读 · 0 评论 -
TensorFlow——深度学习基础和tf.keras
tf.keras-核心高阶 API均方差:(f(x)-y)2/n顺序模型—Sequential:一个输入一个输出层:Dense原创 2020-10-21 22:11:14 · 258 阅读 · 2 评论 -
TensorFlow——初识TensorFlow
TensorFlowMINSTMINSTMINST是一个非常简单的机器视觉数据集,它由几万张28像素*28像素的手写数字组成,这些图片只包含灰度值信息。如下图所示:原创 2020-10-16 10:28:59 · 224 阅读 · 0 评论