[组队学习----机器学习]--决策树

决策树

概念

  • 决策树模型是一种对实例进行分类的树形结构。由内部节点–特征或属性;叶结点–类别组成。从根节点开始,对实例的某一特征测试,根据结果将实例分配到其子节点,依次递归测试完所有的特征取值,直至到达叶结点,即分到该类中。
  • 每个决策树都可看成if-then规则,规则即为特征的选择,内部节点对应规则的条件,叶结点对应规则的结论。而且规则的一个重要性质是:互斥并且完备,即选择该特征之后要测试到所有的特征取值。

决策树学习

决策学习:给定训练数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x n , y n ) } D=\{(x_1,y_1),(x_2,y_2),...(x_n,y_n)\} D={(x1,y1),(x2,y2),...(xn,yn)} ,其中 x i = ( x i 1 , x i 2 , . . . x i n ) T x_i=(x_i^1,x_i^2,...x_i^n)^T xi=(xi1,xi2,...xin)T,为输入示例(特征向量), y ∈ { 1 , 2 , . . . K } y∈\{1,2,...K\} y{1,2,...K} 为类标记。从训练数据集中归纳出一组分类规则,选择分类能力较好的特征。
决策树学习分为:特征选择,决策树生成,剪枝过程。

特征选择

特征选择标准分为:

  1. 信息增益
  2. 信息增益比
  3. 基尼指数

在介绍这三种标准之前,首先提出的概念,表示随机变量不确定性的度量,熵越大,不确定越大。设X为一个取有限个值的随机变量,其熵的定义为:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X)=-\sum_{i=1}^{n} p_{i} \log p_{i} H(X)=i=1npilogpi
其中 P ( X = x i ) = p i ,   i = 1 , 2 , . . . n P(X=x_i)=p_i, \ i=1,2,...n P(X=xi)=pi, i=1,2,...n 并且当 p i = 0 p_i=0 pi=0 0 l o g 0 = 0 0log0=0 0log0=0
条件熵:表示在已知随机变量X的条件下随机变量Y的不确定性。定义:X条件下Y的条件概率分布的熵对X的数学期望。
H ( Y ∣ X ) = ∑ i = 1 n p i H ( Y ∣ X = x i ) H(Y \mid X)=\sum_{i=1}^{n} p_{i} H\left(Y \mid X=x_{i}\right) H(YX)=i=1npiH(YX=xi)
接下来明确一些符号概念:
在数据集 D D D中, ∣ D ∣ |D| D表示样本容量,设有 K K K个类 C k C_k Ck ∣ C k ∣ |C_k| Ck为属于类 C k C_k Ck的样本个数; ∣ C k ∣ |C_k| Ck求和 = ∣ D ∣ = |D| =D。设特征 A 有 n 个 不 同 的 取 值 { a 1 , a 2 , … , a n } A有n个不同的取值\{a_1,a_2,…,a_n\} An{a1,a2,,an},根据 A A A的取值将 D D D划分为 n n n个子集 D 1 , D 2 , … D n D_1,D_2,…D_n D1,D2,Dn ; 表示子集 D i D_i Di中属于类 C k C_k Ck的样本的集合。

  1. 信息增益的计算
    (1) 计算数据集 D D D的经验熵 H ( D ) H(D) H(D)
    H ( D ) = − ∑ k = 1 K ∣ C k ∣ ∣ D ∣ log ⁡ 2 ∣ C k ∣ ∣ D ∣ H(D)=-\sum_{k=1}^{K} \frac{\left|C_{k}\right|}{|D|} \log _{2} \frac{\left|C_{k}\right|}{|D|} H(D)=k=1KDCklog2DCk
    (2) 计算特征 A A A对数据集 D D D的条件熵 H ( D ∣ A ) H(D|A) H(DA)
    H ( D ∣ A ) = ∑ i = 1 n ∣ C k ∣ ∣ D ∣ H ( D i ) = − ∑ i = 1 n ∣ C k ∣ ∣ D ∣ ∑ k = 1 K ∣ D i k ∣ D i ∣ log ⁡ 2 ∣ D i k ∣ ∣ D i ∣ H(D \mid A)=\sum_{i=1}^{n} \frac{\left|C_{k}\right|}{|D|} H\left(D_{i}\right)=-\sum_{i=1}^{n} \frac{\left|C_{k}\right|}{|D|} \sum_{k=1}^{K} \frac{\left|D_{i k}\right|}{D_{i} \mid} \log _{2} \frac{\left|D_{i k}\right|}{\left|D_{i}\right|} H(DA)=i=1nDCkH(Di)=i=1nDCkk=1KDiDiklog2DiDik
    (3) 计算信息增益
    g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D \mid A) g(D,A)=H(D)H(DA)
  2. 信息增益比的计算
    特征 A A A对数据集 D D D的信息增益比 g R ( D , A ) = 信 息 增 益 g ( D , A ) 数 据 集 D 关 于 特 征 A 分 类 的 熵 H A ( D ) g_R(D,A)=\frac{信息增益g(D,A)}{数据集D关于特征A分类的熵H_A(D)} gR(D,A)=DAHA(D)g(D,A)
    H A ( D ) = − ∑ i = 1 n ∣ D i ∣ D ∣ log ⁡ 2 ∣ D i ∣ ∣ D ∣ , n 是 特 征 A 取 值 的 个 数 H_{A}(D)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{D \mid} \log _{2} \frac{\left|D_{i}\right|}{|D|},n是特征A取值的个数 HA(D)=i=1nDDilog2DDinA
  3. 基尼指数的计算
    分类问题中,假设有 K K K个类,样本点属于第 k k k类的概率为 p k p_k pk,则概率分布的基尼指数定义为:
    G i n i ( p ) = ∑ k = 1 K p k ( 1 − p k ) = 1 − ∑ k = 1 K p k 2 {Gini}(p)=\sum_{k=1}^{K} p_{k}\left(1-p_{k}\right)=1-\sum_{k=1}^{K} p_{k}^{2} Gini(p)=k=1Kpk(1pk)=1k=1Kpk2
    如果样本 D D D根据特征 A A A是否取某一可能值 a a a被划分为 D 1 D_1 D1 D 2 D_2 D2两部分,即:
    { ( x , y ) ∈ D ∣ A ( x ) = a } , D 2 = D − D 1 \{(x, y) \in D \mid A(x)=a\}, D_{2}=D-D_{1} {(x,y)DA(x)=a},D2=DD1
    则在特征 A A A的条件下,集合 D D D的基尼指数定义为:
    G i n i ( D , A ) = ∣ D 1 ∣ ∣ D ∣ G i n i ( D 1 ) + ∣ D 2 ∣ ∣ D ∣ G i n i ( D 2 ) {Gini}(D, A)=\frac{\left|D_{1}\right|}{|D|}{Gini}\left(D_{1}\right)+\frac{\left|D_{2}\right|}{|D|} {Gini}\left(D_{2}\right) Gini(D,A)=DD1Gini(D1)+DD2Gini(D2)

决策树的生成

主要介绍三种经典的生成方法:ID3算法;C4.5算法以及CART算法。

  1. ID3算法:
    输入:训练数据集 D D D,特征 A A A,阈值 ε ε ε
    输出:决策树 T T T
    (1)如果 D D D中的实例都为同一类 C k C_k Ck,则 T T T为单节点树,且类 C k C_k Ck为该节点的类标记,返回 T T T
    (2)如果 A A A为空集,则 T T T为单结点树,并将 D D D中实例数最大的类 C k C_k Ck作为该节点的类标记,返回 T T T
    (3)否则,按照上面的规则计算 A A A中个特征对 D D D的信息增益,选择信息增益最大的特征 A g A_g Ag
    (4)如果 A g A_g Ag的信息增益小于阈值 ε ε ε,则 T T T为单节点树,并将 D D D中实例数最大的类 C k C_k Ck作为该节点的类标记,返回 T T T
    (5)否则,对 A g A_g Ag的每一种可能值 a i a_i ai,依 A g = a i A_g=a_i Ag=ai D D D分割为若干非空子集 D i D_i Di,将 D i D_i Di中实例数最大的类作为标记,构建子结点,由结点及其子树构成树 T T T,返回 T T T
    (6)对第 i i i个子节点,以 D i D_i Di为训练集,以 A − { A g } A-\{A_g\} A{Ag}为特征集,递归地执行(1)~(5),得到子树 T i T_i Ti,返回 T T T

信息增益偏向于取值较多的特征,因为当特征取值较多时,根据此特征划分更容易得到纯度更高的子集,因此划分之后的熵更低。所以会很容易造成过拟合,而C4.5采用信息增益比作为特征选择标准,在一定程度上防止了过拟合。

  1. C4.5算法:
    与ID3算法的流程一样,只是在选择特征时,采用信息增益比作为选择标准。
  2. CART算法
    输入:训练数据集D ,停止计算的条件;
    输出:CART决策树
    根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构建二叉树:
    (1)设结点的训练数据集为 D D D,计算现有特征对该数据集的基尼指数。此时,对每一 个特征 A A A, 对其可能取的每个值 a a a,根据样本点 A = a A = a A=a 的测试为“是“或“否”将 D D D分割为 D 1 和 D 2 D_1和D_2 D1D2 两部分,利用上式 来计算 A = a A = a A=a 时的基尼指数。
    (2)在所有可能的特征A以及它们所有可能的切分点 a a a 中,选择基尼指数最小的特征 及其对应可能的切分点作为最有特征与最优切分点。依最优特征与最有切分点,从现结点生成两个子节点,将训练数据集依特征分配到两个子节点中去。
    (3)对两个子结点递归地调用(1)、(2),直至满足条件。
    (4)生成CART决策树
    算法停止计算的条件是结点中的样本个数小于预定阈值,或样本集的基尼指数小于预定阈值,或者没有更多特征。

CART剪枝

CART采用的办法是后剪枝法,即先生成决策树,然后产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,选择泛化能力最好的剪枝策略。
CART树的剪枝算法可以概括为两步:第一步是从原始决策树生成各种剪枝效果的决策树,第二部是用交叉验证来检验剪枝后的预测能力,选择泛化预测能力最好的剪枝后的数作为最终的CART树。
具体流程还没有搞的太明白-.-,可以参考《统计学习方法》第85页,或者参考决策树算法理论(下)

总结

CART算法相比C4.5算法的分类方法,采用了简化的二叉树模型,同时特征选择采用了近似的基尼系数来简化计算。当然CART树最大的好处是还可以做回归模型,这个C4.5没有。

算法支持模型树结构特征选择连续值处理缺失值处理剪枝
ID3分类多叉树信息增益不支持不支持不支持
C4.5分类多叉树信息增益比支持支持支持
CART分类、回归二叉树基尼指数支持支持支持

1)无论是ID3, C4.5还是CART,在做特征选择的时候都是选择最优的一个特征来做分类决策,但是大多数,分类决策不应该是由某一个特征决定的,而是应该由一组特征决定的。这样决策得到的决策树更加准确。这个决策树叫做多变量决策树(multi-variate decision tree)。在选择最优特征的时候,多变量决策树不是选择某一个最优特征,而是选择最优的一个特征线性组合来做决策。这个算法的代表是OC1,这里不多介绍。
2)如果样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习里面的随机森林之类的方法解决。

  • 决策树算法的优点:
    1)简单直观,生成的决策树很直观。
    2)基本不需要预处理,不需要提前归一化,处理缺失值。
    3)使用决策树预测的代价是 O ( l o g 2 m ) O(log_2m) O(log2m)。 m为样本数。
    4)既可以处理离散值也可以处理连续值。很多算法只是专注于离散值或者连续值。
    5)可以处理多维度输出的分类问题。
    6)相比于神经网络之类的黑盒分类模型,决策树在逻辑上可以得到很好的解释
    7)可以交叉验证的剪枝来选择模型,从而提高泛化能力。
    8) 对于异常点的容错能力好,健壮性高。
  • 决策树算法的缺点:
    1)决策树算法非常容易过拟合,导致泛化能力不强。可以通过设置节点最少样本数量和限制决策树深度来改进。
    2)决策树会因为样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习之类的方法解决。
    3)寻找最优的决策树是一个NP难的问题,我们一般是通过启发式方法,容易陷入局部最优。可以通过集成学习之类的方法来改善。
    4)有些比较复杂的关系,决策树很难学习,比如异或。这个就没有办法了,一般这种关系可以换神经网络分类方法来解决。
    5)如果某些特征的样本比例过大,生成决策树容易偏向于这些特征。这个可以通过调节样本权重来改善。
    参考至刘建平,决策树原理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值