LeetCode 887:鸡蛋掉落[Python实现]

13 篇文章 0 订阅
10 篇文章 0 订阅

你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑。

每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去。

你知道存在楼层 F ,满足 0 <= F <= N 任何从高于 F 的楼层落下的鸡蛋都会碎,从 F 楼层或比它低的楼层落下的鸡蛋都不会破。

每次移动,你可以取一个鸡蛋(如果你有完整的鸡蛋)并把它从任一楼层 X 扔下(满足 1 <= X <= N)。

你的目标是确切地知道 F 的值是多少。

无论 F 的初始值如何,你确定 F 的值的最小移动次数是多少?

示例 1:

输入:K = 1, N = 2
输出:2
解释:
鸡蛋从 1 楼掉落。如果它碎了,我们肯定知道 F = 0 。
否则,鸡蛋从 2 楼掉落。如果它碎了,我们肯定知道 F = 1 。
如果它没碎,那么我们肯定知道 F = 2 。
因此,在最坏的情况下我们需要移动 2 次以确定 F 是多少。
示例 2:

输入:K = 2, N = 6
输出:3
示例 3:

输入:K = 3, N = 14
输出:4

思路

首先找出状态转移方程,令二维数组dp[K][Step], K表示鸡蛋个数,Step表示第几次摔落。dp[i][j] 表示i个鸡蛋经过j次摔落最多可以确定多少层楼。显然j <= N

求d[i][j]

  • 当第j次摔落鸡蛋不破,我们可以继续往上确定dp[i][j - 1]
  • 当第j次摔落鸡蛋不破,我们最多只能确定dp[i - 1][j - 1]

状态方程 d[i][j] = dp[i - 1][j - 1] + ( dp[i][j - 1] + 1 ) 最后的1表示本层

Python代码

class Solution:
    def superEggDrop(self, K, N):
        dp = [[0 for _ in range(N + 1)] for _ in range(K + 1)]
        for i in range(1, K + 1):
            for step in range(1, N + 1):
                dp[i][step] = dp[i - 1][step - 1] + (dp[i][step - 1] + 1)
                if dp[K][step] >= N:
                    return step
        return 0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值