你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑。
每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去。
你知道存在楼层 F ,满足 0 <= F <= N 任何从高于 F 的楼层落下的鸡蛋都会碎,从 F 楼层或比它低的楼层落下的鸡蛋都不会破。
每次移动,你可以取一个鸡蛋(如果你有完整的鸡蛋)并把它从任一楼层 X 扔下(满足 1 <= X <= N)。
你的目标是确切地知道 F 的值是多少。
无论 F 的初始值如何,你确定 F 的值的最小移动次数是多少?
示例 1:
输入:K = 1, N = 2
输出:2
解释:
鸡蛋从 1 楼掉落。如果它碎了,我们肯定知道 F = 0 。
否则,鸡蛋从 2 楼掉落。如果它碎了,我们肯定知道 F = 1 。
如果它没碎,那么我们肯定知道 F = 2 。
因此,在最坏的情况下我们需要移动 2 次以确定 F 是多少。
示例 2:
输入:K = 2, N = 6
输出:3
示例 3:
输入:K = 3, N = 14
输出:4
思路
首先找出状态转移方程,令二维数组dp[K][Step]
, K表示鸡蛋个数,Step表示第几次摔落。dp[i][j]
表示i
个鸡蛋经过j
次摔落最多可以确定多少层楼。显然j <= N
。
求d[i][j]
- 当第
j
次摔落鸡蛋不破,我们可以继续往上确定dp[i][j - 1]
层 - 当第
j
次摔落鸡蛋不破,我们最多只能确定dp[i - 1][j - 1]
层
状态方程 d[i][j] = dp[i - 1][j - 1] + ( dp[i][j - 1] + 1 )
最后的1表示本层
Python代码
class Solution:
def superEggDrop(self, K, N):
dp = [[0 for _ in range(N + 1)] for _ in range(K + 1)]
for i in range(1, K + 1):
for step in range(1, N + 1):
dp[i][step] = dp[i - 1][step - 1] + (dp[i][step - 1] + 1)
if dp[K][step] >= N:
return step
return 0